This repository has been archived on 2019-12-07. You can view files and clone it, but cannot push or open issues or pull requests.
dungeon-gunner/source/Pathfinder.cpp

233 lines
7.4 KiB
C++

/*
* Pathfinder.cpp
*
* Created on: 28.04.2013
* Author: Felix
*/
#include "Pathfinder.h"
#include <algorithm>
#include <set>
#include <map>
#include <Thor/Vectors.hpp>
#include "util/Interval.h"
#include "sprites/Tile.h"
const float Pathfinder::WALL_DISTANCE_MULTIPLIER = 1.5f;
/**
* Runs the A* path finding algorithm with areas as nodes and portals as edges.
*
* @warning Areas and portals must not be changed while this is running.
*
* @param start The area to start the path finding from. Must not be null.
* @param end The goal to reach. Must not be null.
* @return Path in reverse order (start being the last item and end the first).
*/
std::vector<Pathfinder::Portal*>
Pathfinder::astarArea(Area* start, Area* end) const {
assert(start);
assert(end);
auto heuristic_cost_estimate = [](Area* start, Area* end) {
return thor::length(sf::Vector2f(end->center - start->center));
};
std::set<Area*> closed;
std::map<Area*, float> openAreasEstimatedCost;
// Navigated areas with previous area/portal.
std::map<Area*, std::pair<Area*, Portal*>> previousAreaAndPortal;
std::map<Area*, float> bestPathCost;
openAreasEstimatedCost[start] = heuristic_cost_estimate(start, end);
bestPathCost[start] = 0;
while (!openAreasEstimatedCost.empty()) {
Area* current = openAreasEstimatedCost.begin()->first;
if (current == end) {
std::vector<Portal*> path;
auto previous = current;
while (previous != start) {
path.push_back(previousAreaAndPortal[previous].second);
previous = previousAreaAndPortal[previous].first;
}
return path;
}
openAreasEstimatedCost.erase(current);
closed.insert(current);
for (Portal& portal : current->portals) {
Area* neighbor = portal.area;
float tentative_g_score = bestPathCost[current] +
heuristic_cost_estimate(current,neighbor);
if (closed.find(neighbor) != closed.end()) {
if (tentative_g_score >= bestPathCost[neighbor])
continue;
}
if ((openAreasEstimatedCost.find(neighbor) ==
openAreasEstimatedCost.end()) ||
(tentative_g_score < bestPathCost[neighbor])) {
previousAreaAndPortal[neighbor] = std::make_pair(current,
&portal);
bestPathCost[neighbor] = tentative_g_score;
openAreasEstimatedCost[neighbor] = bestPathCost[neighbor] +
heuristic_cost_estimate(neighbor, end);
}
}
}
return std::vector<Portal*>();
}
/**
* Returns path in reverse order.
*
* @warning Areas and portals must not be changed while this running.
*
* @param start Position to start the path from.
* @param end Position to move to.
* @param radius Radius of the moving object.
* @return Path from end to start (path from start to end in reverse order).
*/
std::vector<sf::Vector2f>
Pathfinder::getPath(const sf::Vector2f& start, const sf::Vector2f& end,
float radius) const {
if (!getArea(end))
return std::vector<sf::Vector2f>();
std::vector<Portal*> portals = astarArea(getArea(start), getArea(end));
if (portals.empty())
return std::vector<sf::Vector2f>();
std::vector<sf::Vector2f> path;
path.push_back(end);
for (auto p : portals) {
// Find the point on the line of the portal closest to the previous point.
sf::Vector2f startToEnd = sf::Vector2f(p->end - p->start);
float percentage = thor::dotProduct(startToEnd, path.back() - sf::Vector2f(p->start)) /
thor::squaredLength(startToEnd);
sf::Vector2f point;
if (percentage < 0 || percentage > 1.0f) {
if (thor::squaredLength(sf::Vector2f(p->start) - path.back()) <
thor::squaredLength(sf::Vector2f(p->end) - path.back())) {
thor::setLength(startToEnd, WALL_DISTANCE_MULTIPLIER * radius);
point = sf::Vector2f(p->start) + startToEnd;
}
else {
thor::setLength(startToEnd, WALL_DISTANCE_MULTIPLIER * radius);
point = sf::Vector2f(p->end) - startToEnd;
}
}
else
point = sf::Vector2f(p->start) + startToEnd * percentage;
// Take two points on a line orthogonal to the portal.
thor::setLength(startToEnd, radius);
startToEnd = thor::perpendicularVector(startToEnd);
path.push_back(point + startToEnd);
path.push_back(point - startToEnd);
// Make sure the points are in the right order.
if (thor::squaredLength(*(path.end() - 1) - *(path.end() - 3) ) <
thor::squaredLength(*(path.end() - 2) - *(path.end() - 3) ))
std::swap(*(path.end() - 1), *(path.end() - 2));
}
return path;
}
/**
* Inserts an area used for path finding.
*
* @parm rect Rectangle the area covers.
*/
void
Pathfinder::insertArea(const sf::IntRect& rect) {
Area a;
// Not sure why the offset of -50 is required, but with it, areas align
// with tiles perfectly.
a.area = sf::IntRect(rect.left * Tile::TILE_SIZE.x - 50,
rect.top * Tile::TILE_SIZE.y - 50,
rect.width * Tile::TILE_SIZE.x,
rect.height * Tile::TILE_SIZE.y);
a.center = sf::Vector2i(a.area.left + a.area.width / 2,
a.area.top + a.area.height / 2);
mAreas.push_back(a);
}
/**
* Generates portals that connect areas. Needs to be run after insertArea for
* path finding to work.
*/
void
Pathfinder::generatePortals() {
for (Area& it : mAreas) {
// We currently recreate portals for all existing areas, so we have
// to clear in case this was already generated.
it.portals.clear();
for (Area& other : mAreas) {
if (&it == &other)
continue;
Portal portal;
portal.area = &other;
if (it.area.left + it.area.width == other.area.left) {
Interval overlap = Interval::IntervalFromPoints(it.area.top,
it.area.top + it.area.height)
.getOverlap(Interval::IntervalFromPoints(other.area.top,
other.area.top + other.area.height));
if (overlap.getLength() > 0) {
portal.start = sf::Vector2i(other.area.left, overlap.start);
portal.end = sf::Vector2i(other.area.left, overlap.end);
it.portals.push_back(portal);
}
}
if (other.area.left + other.area.width == it.area.left) {
Interval overlap = Interval::IntervalFromPoints(it.area.top,
it.area.top + it.area.height)
.getOverlap(Interval::IntervalFromPoints(other.area.top,
other.area.top + other.area.height));
if (overlap.getLength() > 0) {
portal.start = sf::Vector2i(it.area.left, overlap.start);
portal.end = sf::Vector2i(it.area.left, overlap.end);
it.portals.push_back(portal);
}
}
else if (it.area.top + it.area.height == other.area.top) {
Interval overlap = Interval::IntervalFromPoints(it.area.left,
it.area.left + it.area.width)
.getOverlap(Interval::IntervalFromPoints(other.area.left,
other.area.left + other.area.width));
if (overlap.getLength() > 0) {
portal.start = sf::Vector2i(overlap.start, other.area.top);
portal.end = sf::Vector2i(overlap.end, other.area.top);
it.portals.push_back(portal);
}
}
else if (other.area.top + other.area.height == it.area.top) {
Interval overlap = Interval::IntervalFromPoints(it.area.left,
it.area.left + it.area.width)
.getOverlap(Interval::IntervalFromPoints(other.area.left,
other.area.left + other.area.width));
if (overlap.getLength() > 0) {
portal.start = sf::Vector2i(overlap.start, it.area.top);
portal.end = sf::Vector2i(overlap.end, it.area.top);
it.portals.push_back(portal);
}
}
}
}
}
/**
* Returns the area where point is in.
*/
Pathfinder::Area*
Pathfinder::getArea(const sf::Vector2f& point) const {
for (auto& area : mAreas) {
if (sf::FloatRect(area.area).contains(point))
// Make the return value non-const for convenience.
return &const_cast<Area&>(area);
}
return nullptr;
}