This repository has been archived on 2019-12-07. You can view files and clone it, but cannot push or open issues or pull requests.
dungeon-gunner/src/generator/SimplexNoise.cpp

133 lines
3.6 KiB
C++

/*
* SimplexNoise.cpp
*
* Created on: 14.06.2013
* Author: Felix
*/
#include "SimplexNoise.h"
#include <algorithm>
#include <time.h>
/**
* Initializes permutation with random values.
*/
SimplexNoise::SimplexNoise() {
std::mt19937 mersenne(time(nullptr));
std::uniform_int_distribution<int> distribution(0, 255);
for (int i = 0; i < 512; i++)
mPerm[i] = distribution(mersenne);
}
/**
* Returns a noise value from cache, or generates if it was requested for
* the first time.
*
* @return Value within [-1, 1]
*/
float
SimplexNoise::getNoise(int x, int y) {
if (mCache.count(x) == 0 ||
mCache.at(x).count(y) == 0)
mCache[x][y] = noise(x, y);
return mCache.at(x).at(y);
}
float
SimplexNoise::getNoise(const Vector2i& v) {
return getNoise(v.x, v.y);
}
/**
* Floor implementation that is faster than std implementation by
* ignoring some checks and does not consider some border conditions.
*/
int
SimplexNoise::fastFloor(float f) const {
return (f>0)
? f
: ((int) f) - 1;
}
/**
* Helper function for noise generation.
*/
float
SimplexNoise::grad(int hash, float x, float y) const {
int h = hash & 7; // Convert low 3 bits of hash code
float u = h<4 ? x : y; // into 8 simple gradient directions,
float v = h<4 ? y : x; // and compute the dot product with (x,y).
return ((h&1)? -u : u) + ((h&2)? -2.0f*v : 2.0f*v);
}
/**
* Generates actual noise.
*/
float
SimplexNoise::noise(float x, float y) const {
#define F2 0.366025403 // F2 = 0.5*(sqrt(3.0)-1.0)
#define G2 0.211324865 // G2 = (3.0-Math.sqrt(3.0))/6.0
float n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
float s = (x+y)*F2; // Hairy factor for 2D
float xs = x + s;
float ys = y + s;
int i = fastFloor(xs);
int j = fastFloor(ys);
float t = (float)(i+j)*G2;
float X0 = i-t; // Unskew the cell origin back to (x,y) space
float Y0 = j-t;
float x0 = x-X0; // The x,y distances from the cell origin
float y0 = y-Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
float y1 = y0 - j1 + G2;
float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
float y2 = y0 - 1.0f + 2.0f * G2;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = i & 0xff;
int jj = j & 0xff;
// Calculate the contribution from the three corners
float t0 = 0.5f - x0*x0-y0*y0;
if(t0 < 0.0f) n0 = 0.0f;
else {
t0 *= t0;
n0 = t0 * t0 * grad(mPerm[ii+mPerm[jj]], x0, y0);
}
float t1 = 0.5f - x1*x1-y1*y1;
if(t1 < 0.0f) n1 = 0.0f;
else {
t1 *= t1;
n1 = t1 * t1 * grad(mPerm[ii+i1+mPerm[jj+j1]], x1, y1);
}
float t2 = 0.5f - x2*x2-y2*y2;
if(t2 < 0.0f) n2 = 0.0f;
else {
t2 *= t2;
n2 = t2 * t2 * grad(mPerm[ii+1+mPerm[jj+1]], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 40.0f * (n0 + n1 + n2);
}