Added own SimplexNoise class, cache noise values.
This commit is contained in:
parent
11f3800332
commit
94814e0172
6 changed files with 228 additions and 706 deletions
|
@ -16,7 +16,6 @@
|
|||
|
||||
#include <Thor/Vectors.hpp>
|
||||
|
||||
#include "simplexnoise.h"
|
||||
#include "../Pathfinder.h"
|
||||
#include "../World.h"
|
||||
#include "../util/Log.h"
|
||||
|
@ -43,11 +42,6 @@ const float Generator::LAYER_ENEMIES = 1.0f;
|
|||
Generator::Generator(World& world, Pathfinder& pathfinder) :
|
||||
mWorld(world),
|
||||
mPathfinder(pathfinder) {
|
||||
std::mt19937 mersenne(time(nullptr));
|
||||
std::uniform_int_distribution<int> distribution(0, 255);
|
||||
|
||||
for (int i = 0; i < 512; i++)
|
||||
perm[i] = distribution(mersenne);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -113,49 +107,39 @@ Generator::generateTiles(const sf::IntRect& area) {
|
|||
assert(area.width && !(area.width & (area.width - 1)));
|
||||
assert(area.height && !(area.height & (area.height - 1)));
|
||||
|
||||
array noise;
|
||||
array filtered;
|
||||
for (int x = area.left - MARGIN; x < area.left + area.width + MARGIN; x++) {
|
||||
for (int y = area.top - MARGIN; y < area.top + area.height + MARGIN; y++) {
|
||||
noise[x][y] =
|
||||
(scaled_octave_noise_3d(2, 2, 0.05f, 0.5f, -0.5f, x, y, LAYER_TILES) +
|
||||
scaled_octave_noise_3d(2, 2, 0.5f, 0.15f, -0.15f, x, y, LAYER_TILES)
|
||||
< -0.1f)
|
||||
? type::WALL
|
||||
: type::FLOOR;
|
||||
}
|
||||
}
|
||||
fill(filtered, area, type::FLOOR);
|
||||
array generatedTiles;
|
||||
fill(generatedTiles, area, type::FLOOR);
|
||||
|
||||
for (int x = area.left; x < area.left + area.width; x++) {
|
||||
for (int y = area.top; y < area.top + area.height; y++) {
|
||||
filterWalls(noise, filtered, x, y, 2, 1, 0);
|
||||
filterWalls(noise, filtered, x, y, 6, 1, 2);
|
||||
filterWalls(noise, filtered, x, y, 10, 1, 4);
|
||||
filterWalls(generatedTiles, x, y, 2, 1, 0);
|
||||
filterWalls(generatedTiles, x, y, 6, 1, 2);
|
||||
filterWalls(generatedTiles, x, y, 10, 1, 4);
|
||||
}
|
||||
}
|
||||
|
||||
for (int x = area.left; x < area.left + area.width; x++) {
|
||||
for (int x = area.left; x < area.left + area.width; x++)
|
||||
for (int y = area.top; y < area.top + area.height; y++) {
|
||||
// Merge map that we just generated with stored map.
|
||||
mTiles[x][y] = generatedTiles[x][y];
|
||||
// Actually generate physical tiles.
|
||||
mWorld.insert(std::shared_ptr<Sprite>(
|
||||
new Tile(filtered.at(x).at(y), x, y)));
|
||||
new Tile(generatedTiles.at(x).at(y), x, y)));
|
||||
}
|
||||
}
|
||||
generateAreas(filtered, area, sf::Vector2f(area.left, area.top));
|
||||
|
||||
generateAreas(area, sf::Vector2f(area.left, area.top));
|
||||
mPathfinder.generatePortals();
|
||||
mTiles = filtered;
|
||||
}
|
||||
|
||||
std::vector<sf::Vector2f>
|
||||
Generator::getEnemySpawns(const sf::IntRect& area) const {
|
||||
Generator::getEnemySpawns(const sf::IntRect& area) {
|
||||
auto compare = [](const sf::Vector2f& a, const sf::Vector2f& b) {
|
||||
return a.x < b.x || (a.x == b.x && a.y < b.y);
|
||||
};
|
||||
std::set<sf::Vector2f, decltype(compare)> ret(compare);
|
||||
for (int x = area.left; x < area.left + area.width; x++) {
|
||||
for (int y = area.top; y < area.top + area.height; y++) {
|
||||
if (scaled_octave_noise_3d(2, 2, 0.5f, 10.0f, 0, x, y, LAYER_ENEMIES)
|
||||
< 1.0f) {
|
||||
if (mCharacterNoise.getNoise(x, y) < 0.05f) {
|
||||
ret.insert(sf::Vector2f(thor::cwiseProduct(
|
||||
findClosestFloor(sf::Vector2i(x, y)), Tile::TILE_SIZE)));
|
||||
}
|
||||
|
@ -172,35 +156,34 @@ Generator::getEnemySpawns(const sf::IntRect& area) const {
|
|||
* @param value The value to set.
|
||||
*/
|
||||
void
|
||||
Generator::fill(array& image, const sf::IntRect& area, Tile::Type value) {
|
||||
Generator::fill(array& tiles, const sf::IntRect& area, Tile::Type value) {
|
||||
for (int x = area.left; x < area.left + area.width; x++) {
|
||||
for (int y = area.top; y < area.top + area.height; y++)
|
||||
image[x][y] = value;
|
||||
tiles[x][y] = value;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Counts and returns the number of walls within the area.
|
||||
*
|
||||
* @param[in] tiles Array of tile values.
|
||||
* @param area The area to count in.
|
||||
*/
|
||||
int
|
||||
Generator::countWalls(const array& tiles, const sf::IntRect& area) {
|
||||
Generator::countWalls(const sf::IntRect& area) {
|
||||
int count = 0;
|
||||
for (int x = area.left; x < area.left + area.width; x++) {
|
||||
for (int y = area.top; y < area.top + area.height; y++)
|
||||
count += (int) (tiles.at(x).at(y) == type::WALL);
|
||||
count += (int) (getTileType(mCharacterNoise.getNoise(x, y)) ==
|
||||
type::WALL);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds rectangles of specific size inside vector in and
|
||||
* Finds rectangles of specific size with mTileNoise and
|
||||
* puts them into vector out.
|
||||
*
|
||||
* @param[in] in Perlin noise values.
|
||||
* @param[in,out] out Tiles to be placed. Does not explicitly set floor values
|
||||
* @param[in,out] tiles Tiles to be placed. Does not explicitly set floor values
|
||||
* (keeps previous values).
|
||||
* @param x Position to check from (top left corner for rectangle).
|
||||
* @param y Position to check from (top left corner for rectangle).
|
||||
|
@ -210,31 +193,30 @@ Generator::countWalls(const array& tiles, const sf::IntRect& area) {
|
|||
* tiles is not walls (tilecount >= longside * shortside - subtract).
|
||||
*/
|
||||
void
|
||||
Generator::filterWalls(const array& in, array& out, int x, int y, int longside,
|
||||
Generator::filterWalls(array& tiles, int x, int y, int longside,
|
||||
int shortside, int subtract) {
|
||||
// Filter in horizontal direction.
|
||||
if (countWalls(in, sf::IntRect(x, y, longside, shortside)) >=
|
||||
if (countWalls(sf::IntRect(x, y, longside, shortside)) >=
|
||||
shortside * longside - subtract)
|
||||
fill(out, sf::IntRect(x, y, longside, shortside), type::WALL);
|
||||
fill(tiles, sf::IntRect(x, y, longside, shortside), type::WALL);
|
||||
// Filter in vertical direction.
|
||||
if (countWalls(in, sf::IntRect(x, y, shortside, longside)) >=
|
||||
if (countWalls(sf::IntRect(x, y, shortside, longside)) >=
|
||||
shortside * longside - subtract)
|
||||
fill(out, sf::IntRect(x, y, shortside, longside), type::WALL);
|
||||
fill(tiles, sf::IntRect(x, y, shortside, longside), type::WALL);
|
||||
}
|
||||
|
||||
/**
|
||||
* Inserts tile if all values within area are the same, otherwise divides area
|
||||
* into four and continues recursively.
|
||||
* Inserts floor tiles into path finder, using a quadtree approach to group
|
||||
* tiles where possible.
|
||||
*
|
||||
* @param in Array of tile values.
|
||||
* @param area The area to generate areas for.
|
||||
* @param offset Offset of tiles[0][0] from World coordinate (0, 0).
|
||||
*/
|
||||
void
|
||||
Generator::generateAreas(const array& in, const sf::IntRect& area,
|
||||
const sf::Vector2f& offset) const {
|
||||
Generator::generateAreas(const sf::IntRect& area,
|
||||
const sf::Vector2f& offset) {
|
||||
assert(area.width > 0 && area.height > 0);
|
||||
int count = countWalls(in, area);
|
||||
int count = countWalls(area);
|
||||
if (count == 0) {
|
||||
mPathfinder.insertArea(sf::IntRect(area));
|
||||
}
|
||||
|
@ -244,17 +226,29 @@ Generator::generateAreas(const array& in, const sf::IntRect& area,
|
|||
else {
|
||||
int halfWidth = area.width / 2.0f;
|
||||
int halfHeight = area.height / 2.0f;
|
||||
generateAreas(in, sf::IntRect(area.left,
|
||||
generateAreas(sf::IntRect(area.left,
|
||||
area.top, halfWidth, halfHeight), offset);
|
||||
generateAreas(in, sf::IntRect(area.left + halfWidth,
|
||||
generateAreas(sf::IntRect(area.left + halfWidth,
|
||||
area.top, halfWidth, halfHeight), offset);
|
||||
generateAreas(in, sf::IntRect(area.left,
|
||||
generateAreas(sf::IntRect(area.left,
|
||||
area.top + halfHeight, halfWidth, halfHeight), offset);
|
||||
generateAreas(in, sf::IntRect(area.left + halfWidth,
|
||||
generateAreas(sf::IntRect(area.left + halfWidth,
|
||||
area.top + halfHeight, halfWidth, halfHeight), offset);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Defines if a perlin noise result value is converted to a wall or floor tile.
|
||||
*
|
||||
* @param value Perlin noise value within [-1, 1]
|
||||
*/
|
||||
Generator::type
|
||||
Generator::getTileType(float value) {
|
||||
return (value < -0.2f)
|
||||
? type::WALL
|
||||
: type::FLOOR;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a valid position (floor) for the player to spawn at.
|
||||
*/
|
||||
|
|
|
@ -11,30 +11,35 @@
|
|||
#include <SFML/Graphics.hpp>
|
||||
|
||||
#include "../sprites/Tile.h"
|
||||
#include "SimplexNoise.h"
|
||||
|
||||
class World;
|
||||
class Pathfinder;
|
||||
|
||||
/**
|
||||
* Procedurally generates tiles, chooses player and enemy spawn positions.
|
||||
*/
|
||||
class Generator {
|
||||
public:
|
||||
explicit Generator(World& world, Pathfinder& pathfinder);
|
||||
void generateCurrentAreaIfNeeded(const sf::Vector2f& position);
|
||||
sf::Vector2f getPlayerSpawn() const;
|
||||
std::vector<sf::Vector2f> getEnemySpawns(const sf::IntRect& area) const;
|
||||
std::vector<sf::Vector2f> getEnemySpawns(const sf::IntRect& area);
|
||||
|
||||
private:
|
||||
typedef Tile::Type type;
|
||||
typedef std::map<int, std::map<int, type> > array;
|
||||
|
||||
private:
|
||||
void generateAreas(const sf::IntRect& area, const sf::Vector2f& offset);
|
||||
void generateTiles(const sf::IntRect& area);
|
||||
sf::Vector2i findClosestFloor(const sf::Vector2i& position) const;
|
||||
static void fill(array& in, const sf::IntRect& area, type value);
|
||||
static void filterWalls(const array& in, array& out, int x, int y,
|
||||
int longside, int shortside, int subtract);
|
||||
static int countWalls(const array& in, const sf::IntRect& area);
|
||||
void generateAreas(const array& in, const sf::IntRect& area,
|
||||
const sf::Vector2f& offset) const;
|
||||
|
||||
static void fill(array& tiles, const sf::IntRect& area, type value);
|
||||
void filterWalls(array& tiles, int x, int y, int longside,
|
||||
int shortside, int subtract);
|
||||
int countWalls(const sf::IntRect& area);
|
||||
static type getTileType(float value);
|
||||
|
||||
private:
|
||||
static const int GENERATE_AREA_SIZE;
|
||||
|
@ -49,6 +54,10 @@ private:
|
|||
array mTiles;
|
||||
/// Stores where tiles have already been generated.
|
||||
std::map<int, std::map<int, bool> > mGenerated;
|
||||
/// Perlin noise used for tile generation.
|
||||
SimplexNoise mTileNoise;
|
||||
/// Perlin noise used for character placement.
|
||||
SimplexNoise mCharacterNoise;
|
||||
};
|
||||
|
||||
#endif /* DG_GENERATOR_H_ */
|
||||
|
|
128
source/generator/SimplexNoise.cpp
Normal file
128
source/generator/SimplexNoise.cpp
Normal file
|
@ -0,0 +1,128 @@
|
|||
/*
|
||||
* SimplexNoise.cpp
|
||||
*
|
||||
* Created on: 14.06.2013
|
||||
* Author: Felix
|
||||
*/
|
||||
|
||||
#include "SimplexNoise.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <time.h>
|
||||
|
||||
/**
|
||||
* Initializes permutation with random values.
|
||||
*/
|
||||
SimplexNoise::SimplexNoise() {
|
||||
std::mt19937 mersenne(time(nullptr));
|
||||
std::uniform_int_distribution<int> distribution(0, 255);
|
||||
|
||||
for (int i = 0; i < 512; i++)
|
||||
mPerm[i] = distribution(mersenne);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a noise value from cache, or generates if it was requested for
|
||||
* the first time.
|
||||
*
|
||||
* @return Value within [-1, 1]
|
||||
*/
|
||||
float
|
||||
SimplexNoise::getNoise(int x, int y) {
|
||||
if (mCache.count(x) == 0 ||
|
||||
mCache.at(x).count(y) == 0)
|
||||
mCache[x][y] = noise(x, y);
|
||||
return mCache.at(x).at(y);
|
||||
}
|
||||
|
||||
/**
|
||||
* Floor implementation that is faster than std implementation by
|
||||
* ignoring some checks and does not consider some border conditions.
|
||||
*/
|
||||
int
|
||||
SimplexNoise::fastFloor(float f) const {
|
||||
return (f>0)
|
||||
? f
|
||||
: ((int) f) - 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper function for noise generation.
|
||||
*/
|
||||
float
|
||||
SimplexNoise::grad(int hash, float x, float y) const {
|
||||
int h = hash & 7; // Convert low 3 bits of hash code
|
||||
float u = h<4 ? x : y; // into 8 simple gradient directions,
|
||||
float v = h<4 ? y : x; // and compute the dot product with (x,y).
|
||||
return ((h&1)? -u : u) + ((h&2)? -2.0f*v : 2.0f*v);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates actual noise.
|
||||
*/
|
||||
float
|
||||
SimplexNoise::noise(float x, float y) const {
|
||||
|
||||
#define F2 0.366025403 // F2 = 0.5*(sqrt(3.0)-1.0)
|
||||
#define G2 0.211324865 // G2 = (3.0-Math.sqrt(3.0))/6.0
|
||||
|
||||
float n0, n1, n2; // Noise contributions from the three corners
|
||||
|
||||
// Skew the input space to determine which simplex cell we're in
|
||||
float s = (x+y)*F2; // Hairy factor for 2D
|
||||
float xs = x + s;
|
||||
float ys = y + s;
|
||||
int i = fastFloor(xs);
|
||||
int j = fastFloor(ys);
|
||||
|
||||
float t = (float)(i+j)*G2;
|
||||
float X0 = i-t; // Unskew the cell origin back to (x,y) space
|
||||
float Y0 = j-t;
|
||||
float x0 = x-X0; // The x,y distances from the cell origin
|
||||
float y0 = y-Y0;
|
||||
|
||||
// For the 2D case, the simplex shape is an equilateral triangle.
|
||||
// Determine which simplex we are in.
|
||||
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
|
||||
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
|
||||
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
|
||||
|
||||
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
|
||||
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
|
||||
// c = (3-sqrt(3))/6
|
||||
|
||||
float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
|
||||
float y1 = y0 - j1 + G2;
|
||||
float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
|
||||
float y2 = y0 - 1.0f + 2.0f * G2;
|
||||
|
||||
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
|
||||
int ii = i & 0xff;
|
||||
int jj = j & 0xff;
|
||||
|
||||
// Calculate the contribution from the three corners
|
||||
float t0 = 0.5f - x0*x0-y0*y0;
|
||||
if(t0 < 0.0f) n0 = 0.0f;
|
||||
else {
|
||||
t0 *= t0;
|
||||
n0 = t0 * t0 * grad(mPerm[ii+mPerm[jj]], x0, y0);
|
||||
}
|
||||
|
||||
float t1 = 0.5f - x1*x1-y1*y1;
|
||||
if(t1 < 0.0f) n1 = 0.0f;
|
||||
else {
|
||||
t1 *= t1;
|
||||
n1 = t1 * t1 * grad(mPerm[ii+i1+mPerm[jj+j1]], x1, y1);
|
||||
}
|
||||
|
||||
float t2 = 0.5f - x2*x2-y2*y2;
|
||||
if(t2 < 0.0f) n2 = 0.0f;
|
||||
else {
|
||||
t2 *= t2;
|
||||
n2 = t2 * t2 * grad(mPerm[ii+1+mPerm[jj+1]], x2, y2);
|
||||
}
|
||||
|
||||
// Add contributions from each corner to get the final noise value.
|
||||
// The result is scaled to return values in the interval [-1,1].
|
||||
return 40.0f * (n0 + n1 + n2);
|
||||
}
|
37
source/generator/SimplexNoise.h
Normal file
37
source/generator/SimplexNoise.h
Normal file
|
@ -0,0 +1,37 @@
|
|||
/*
|
||||
* SimplexNoise.h
|
||||
*
|
||||
* Created on: 14.06.2013
|
||||
* Author: Felix
|
||||
*/
|
||||
|
||||
#ifndef DG_SIMPLEXNOISE_H_
|
||||
#define DG_SIMPLEXNOISE_H_
|
||||
|
||||
#include <array>
|
||||
#include <map>
|
||||
|
||||
/**
|
||||
* Caching simplex noise generator.
|
||||
*
|
||||
* The actual simplex noise generator is simplexnoise1234.h/cpp
|
||||
* from http://staffwww.itn.liu.se/~stegu/aqsis/aqsis-newnoise/ . See
|
||||
* that implementation for more details.
|
||||
*/
|
||||
class SimplexNoise {
|
||||
public:
|
||||
SimplexNoise();
|
||||
float getNoise(int x, int y);
|
||||
|
||||
|
||||
private:
|
||||
float noise(float x, float y) const;
|
||||
float grad(int hash, float x, float y) const;
|
||||
int fastFloor(float f) const;
|
||||
|
||||
private:
|
||||
std::array<unsigned char, 512> mPerm;
|
||||
std::map<int, std::map<int, float> > mCache;
|
||||
};
|
||||
|
||||
#endif /* DG_SIMPLEXNOISE_H_ */
|
|
@ -1,475 +0,0 @@
|
|||
/* Copyright (c) 2007-2012 Eliot Eshelman
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include "simplexnoise.h"
|
||||
|
||||
|
||||
/* 2D, 3D and 4D Simplex Noise functions return 'random' values in (-1, 1).
|
||||
|
||||
This algorithm was originally designed by Ken Perlin, but my code has been
|
||||
adapted from the implementation written by Stefan Gustavson (stegu@itn.liu.se)
|
||||
|
||||
Raw Simplex noise functions return the value generated by Ken's algorithm.
|
||||
|
||||
Scaled Raw Simplex noise functions adjust the range of values returned from the
|
||||
traditional (-1, 1) to whichever bounds are passed to the function.
|
||||
|
||||
Multi-Octave Simplex noise functions compine multiple noise values to create a
|
||||
more complex result. Each successive layer of noise is adjusted and scaled.
|
||||
|
||||
Scaled Multi-Octave Simplex noise functions scale the values returned from the
|
||||
traditional (-1,1) range to whichever range is passed to the function.
|
||||
|
||||
In many cases, you may think you only need a 1D noise function, but in practice
|
||||
2D is almost always better. For instance, if you're using the current frame
|
||||
number as the parameter for the noise, all objects will end up with the same
|
||||
noise value at each frame. By adding a second parameter on the second
|
||||
dimension, you can ensure that each gets a unique noise value and they don't
|
||||
all look identical.
|
||||
*/
|
||||
|
||||
|
||||
// 2D Multi-octave Simplex noise.
|
||||
//
|
||||
// For each octave, a higher frequency/lower amplitude function will be added to the original.
|
||||
// The higher the persistence [0-1], the more of each succeeding octave will be added.
|
||||
float octave_noise_2d( const float octaves, const float persistence, const float scale, const float x, const float y ) {
|
||||
float total = 0;
|
||||
float frequency = scale;
|
||||
float amplitude = 1;
|
||||
|
||||
// We have to keep track of the largest possible amplitude,
|
||||
// because each octave adds more, and we need a value in [-1, 1].
|
||||
float maxAmplitude = 0;
|
||||
|
||||
for( int i=0; i < octaves; i++ ) {
|
||||
total += raw_noise_2d( x * frequency, y * frequency ) * amplitude;
|
||||
|
||||
frequency *= 2;
|
||||
maxAmplitude += amplitude;
|
||||
amplitude *= persistence;
|
||||
}
|
||||
|
||||
return total / maxAmplitude;
|
||||
}
|
||||
|
||||
|
||||
// 3D Multi-octave Simplex noise.
|
||||
//
|
||||
// For each octave, a higher frequency/lower amplitude function will be added to the original.
|
||||
// The higher the persistence [0-1], the more of each succeeding octave will be added.
|
||||
float octave_noise_3d( const float octaves, const float persistence, const float scale, const float x, const float y, const float z ) {
|
||||
float total = 0;
|
||||
float frequency = scale;
|
||||
float amplitude = 1;
|
||||
|
||||
// We have to keep track of the largest possible amplitude,
|
||||
// because each octave adds more, and we need a value in [-1, 1].
|
||||
float maxAmplitude = 0;
|
||||
|
||||
for( int i=0; i < octaves; i++ ) {
|
||||
total += raw_noise_3d( x * frequency, y * frequency, z * frequency ) * amplitude;
|
||||
|
||||
frequency *= 2;
|
||||
maxAmplitude += amplitude;
|
||||
amplitude *= persistence;
|
||||
}
|
||||
|
||||
return total / maxAmplitude;
|
||||
}
|
||||
|
||||
|
||||
// 4D Multi-octave Simplex noise.
|
||||
//
|
||||
// For each octave, a higher frequency/lower amplitude function will be added to the original.
|
||||
// The higher the persistence [0-1], the more of each succeeding octave will be added.
|
||||
float octave_noise_4d( const float octaves, const float persistence, const float scale, const float x, const float y, const float z, const float w ) {
|
||||
float total = 0;
|
||||
float frequency = scale;
|
||||
float amplitude = 1;
|
||||
|
||||
// We have to keep track of the largest possible amplitude,
|
||||
// because each octave adds more, and we need a value in [-1, 1].
|
||||
float maxAmplitude = 0;
|
||||
|
||||
for( int i=0; i < octaves; i++ ) {
|
||||
total += raw_noise_4d( x * frequency, y * frequency, z * frequency, w * frequency ) * amplitude;
|
||||
|
||||
frequency *= 2;
|
||||
maxAmplitude += amplitude;
|
||||
amplitude *= persistence;
|
||||
}
|
||||
|
||||
return total / maxAmplitude;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// 2D Scaled Multi-octave Simplex noise.
|
||||
//
|
||||
// Returned value will be between loBound and hiBound.
|
||||
float scaled_octave_noise_2d( const float octaves, const float persistence, const float scale, const float loBound, const float hiBound, const float x, const float y ) {
|
||||
return octave_noise_2d(octaves, persistence, scale, x, y) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
|
||||
}
|
||||
|
||||
|
||||
// 3D Scaled Multi-octave Simplex noise.
|
||||
//
|
||||
// Returned value will be between loBound and hiBound.
|
||||
float scaled_octave_noise_3d( const float octaves, const float persistence, const float scale, const float loBound, const float hiBound, const float x, const float y, const float z ) {
|
||||
return octave_noise_3d(octaves, persistence, scale, x, y, z) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
|
||||
}
|
||||
|
||||
// 4D Scaled Multi-octave Simplex noise.
|
||||
//
|
||||
// Returned value will be between loBound and hiBound.
|
||||
float scaled_octave_noise_4d( const float octaves, const float persistence, const float scale, const float loBound, const float hiBound, const float x, const float y, const float z, const float w ) {
|
||||
return octave_noise_4d(octaves, persistence, scale, x, y, z, w) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// 2D Scaled Simplex raw noise.
|
||||
//
|
||||
// Returned value will be between loBound and hiBound.
|
||||
float scaled_raw_noise_2d( const float loBound, const float hiBound, const float x, const float y ) {
|
||||
return raw_noise_2d(x, y) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
|
||||
}
|
||||
|
||||
|
||||
// 3D Scaled Simplex raw noise.
|
||||
//
|
||||
// Returned value will be between loBound and hiBound.
|
||||
float scaled_raw_noise_3d( const float loBound, const float hiBound, const float x, const float y, const float z ) {
|
||||
return raw_noise_3d(x, y, z) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
|
||||
}
|
||||
|
||||
// 4D Scaled Simplex raw noise.
|
||||
//
|
||||
// Returned value will be between loBound and hiBound.
|
||||
float scaled_raw_noise_4d( const float loBound, const float hiBound, const float x, const float y, const float z, const float w ) {
|
||||
return raw_noise_4d(x, y, z, w) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// 2D raw Simplex noise
|
||||
float raw_noise_2d( const float x, const float y ) {
|
||||
// Noise contributions from the three corners
|
||||
float n0, n1, n2;
|
||||
|
||||
// Skew the input space to determine which simplex cell we're in
|
||||
float F2 = 0.5 * (sqrtf(3.0) - 1.0);
|
||||
// Hairy factor for 2D
|
||||
float s = (x + y) * F2;
|
||||
int i = fastfloor( x + s );
|
||||
int j = fastfloor( y + s );
|
||||
|
||||
float G2 = (3.0 - sqrtf(3.0)) / 6.0;
|
||||
float t = (i + j) * G2;
|
||||
// Unskew the cell origin back to (x,y) space
|
||||
float X0 = i-t;
|
||||
float Y0 = j-t;
|
||||
// The x,y distances from the cell origin
|
||||
float x0 = x-X0;
|
||||
float y0 = y-Y0;
|
||||
|
||||
// For the 2D case, the simplex shape is an equilateral triangle.
|
||||
// Determine which simplex we are in.
|
||||
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
|
||||
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
|
||||
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
|
||||
|
||||
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
|
||||
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
|
||||
// c = (3-sqrt(3))/6
|
||||
float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
|
||||
float y1 = y0 - j1 + G2;
|
||||
float x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
|
||||
float y2 = y0 - 1.0 + 2.0 * G2;
|
||||
|
||||
// Work out the hashed gradient indices of the three simplex corners
|
||||
int ii = i & 255;
|
||||
int jj = j & 255;
|
||||
uint8_t gi0 = perm[ii+perm[jj]] % 12;
|
||||
uint8_t gi1 = perm[ii+i1+perm[jj+j1]] % 12;
|
||||
uint8_t gi2 = perm[ii+1+perm[jj+1]] % 12;
|
||||
|
||||
// Calculate the contribution from the three corners
|
||||
float t0 = 0.5 - x0*x0-y0*y0;
|
||||
if(t0<0) n0 = 0.0;
|
||||
else {
|
||||
t0 *= t0;
|
||||
n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
|
||||
}
|
||||
|
||||
float t1 = 0.5 - x1*x1-y1*y1;
|
||||
if(t1<0) n1 = 0.0;
|
||||
else {
|
||||
t1 *= t1;
|
||||
n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
|
||||
}
|
||||
|
||||
float t2 = 0.5 - x2*x2-y2*y2;
|
||||
if(t2<0) n2 = 0.0;
|
||||
else {
|
||||
t2 *= t2;
|
||||
n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
|
||||
}
|
||||
|
||||
// Add contributions from each corner to get the final noise value.
|
||||
// The result is scaled to return values in the interval [-1,1].
|
||||
return 70.0 * (n0 + n1 + n2);
|
||||
}
|
||||
|
||||
|
||||
// 3D raw Simplex noise
|
||||
float raw_noise_3d( const float x, const float y, const float z ) {
|
||||
float n0, n1, n2, n3; // Noise contributions from the four corners
|
||||
|
||||
// Skew the input space to determine which simplex cell we're in
|
||||
float F3 = 1.0/3.0;
|
||||
float s = (x+y+z)*F3; // Very nice and simple skew factor for 3D
|
||||
int i = fastfloor(x+s);
|
||||
int j = fastfloor(y+s);
|
||||
int k = fastfloor(z+s);
|
||||
|
||||
float G3 = 1.0/6.0; // Very nice and simple unskew factor, too
|
||||
float t = (i+j+k)*G3;
|
||||
float X0 = i-t; // Unskew the cell origin back to (x,y,z) space
|
||||
float Y0 = j-t;
|
||||
float Z0 = k-t;
|
||||
float x0 = x-X0; // The x,y,z distances from the cell origin
|
||||
float y0 = y-Y0;
|
||||
float z0 = z-Z0;
|
||||
|
||||
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
|
||||
// Determine which simplex we are in.
|
||||
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
|
||||
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
|
||||
|
||||
if(x0>=y0) {
|
||||
if(y0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
|
||||
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
|
||||
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
|
||||
}
|
||||
else { // x0<y0
|
||||
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
|
||||
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
|
||||
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
|
||||
}
|
||||
|
||||
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
|
||||
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
|
||||
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
|
||||
// c = 1/6.
|
||||
float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
|
||||
float y1 = y0 - j1 + G3;
|
||||
float z1 = z0 - k1 + G3;
|
||||
float x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
|
||||
float y2 = y0 - j2 + 2.0*G3;
|
||||
float z2 = z0 - k2 + 2.0*G3;
|
||||
float x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
|
||||
float y3 = y0 - 1.0 + 3.0*G3;
|
||||
float z3 = z0 - 1.0 + 3.0*G3;
|
||||
|
||||
// Work out the hashed gradient indices of the four simplex corners
|
||||
int ii = i & 255;
|
||||
int jj = j & 255;
|
||||
int kk = k & 255;
|
||||
uint8_t gi0 = perm[ii+perm[jj+perm[kk]]] % 12;
|
||||
uint8_t gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1]]] % 12;
|
||||
uint8_t gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2]]] % 12;
|
||||
uint8_t gi3 = perm[ii+1+perm[jj+1+perm[kk+1]]] % 12;
|
||||
|
||||
// Calculate the contribution from the four corners
|
||||
float t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
|
||||
if(t0<0) n0 = 0.0;
|
||||
else {
|
||||
t0 *= t0;
|
||||
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
|
||||
}
|
||||
|
||||
float t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
|
||||
if(t1<0) n1 = 0.0;
|
||||
else {
|
||||
t1 *= t1;
|
||||
n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
|
||||
}
|
||||
|
||||
float t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
|
||||
if(t2<0) n2 = 0.0;
|
||||
else {
|
||||
t2 *= t2;
|
||||
n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
|
||||
}
|
||||
|
||||
float t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
|
||||
if(t3<0) n3 = 0.0;
|
||||
else {
|
||||
t3 *= t3;
|
||||
n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
|
||||
}
|
||||
|
||||
// Add contributions from each corner to get the final noise value.
|
||||
// The result is scaled to stay just inside [-1,1]
|
||||
return 32.0*(n0 + n1 + n2 + n3);
|
||||
}
|
||||
|
||||
|
||||
// 4D raw Simplex noise
|
||||
float raw_noise_4d( const float x, const float y, const float z, const float w ) {
|
||||
// The skewing and unskewing factors are hairy again for the 4D case
|
||||
float F4 = (sqrtf(5.0)-1.0)/4.0;
|
||||
float G4 = (5.0-sqrtf(5.0))/20.0;
|
||||
float n0, n1, n2, n3, n4; // Noise contributions from the five corners
|
||||
|
||||
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
|
||||
float s = (x + y + z + w) * F4; // Factor for 4D skewing
|
||||
int i = fastfloor(x + s);
|
||||
int j = fastfloor(y + s);
|
||||
int k = fastfloor(z + s);
|
||||
int l = fastfloor(w + s);
|
||||
float t = (i + j + k + l) * G4; // Factor for 4D unskewing
|
||||
float X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
|
||||
float Y0 = j - t;
|
||||
float Z0 = k - t;
|
||||
float W0 = l - t;
|
||||
|
||||
float x0 = x - X0; // The x,y,z,w distances from the cell origin
|
||||
float y0 = y - Y0;
|
||||
float z0 = z - Z0;
|
||||
float w0 = w - W0;
|
||||
|
||||
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
|
||||
// To find out which of the 24 possible simplices we're in, we need to
|
||||
// determine the magnitude ordering of x0, y0, z0 and w0.
|
||||
// The method below is a good way of finding the ordering of x,y,z,w and
|
||||
// then find the correct traversal order for the simplex we're in.
|
||||
// First, six pair-wise comparisons are performed between each possible pair
|
||||
// of the four coordinates, and the results are used to add up binary bits
|
||||
// for an integer index.
|
||||
int c1 = (x0 > y0) ? 32 : 0;
|
||||
int c2 = (x0 > z0) ? 16 : 0;
|
||||
int c3 = (y0 > z0) ? 8 : 0;
|
||||
int c4 = (x0 > w0) ? 4 : 0;
|
||||
int c5 = (y0 > w0) ? 2 : 0;
|
||||
int c6 = (z0 > w0) ? 1 : 0;
|
||||
int c = c1 + c2 + c3 + c4 + c5 + c6;
|
||||
|
||||
int i1, j1, k1, l1; // The integer offsets for the second simplex corner
|
||||
int i2, j2, k2, l2; // The integer offsets for the third simplex corner
|
||||
int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
|
||||
|
||||
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
|
||||
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
|
||||
// impossible. Only the 24 indices which have non-zero entries make any sense.
|
||||
// We use a thresholding to set the coordinates in turn from the largest magnitude.
|
||||
// The number 3 in the "simplex" array is at the position of the largest coordinate.
|
||||
i1 = simplex[c][0]>=3 ? 1 : 0;
|
||||
j1 = simplex[c][1]>=3 ? 1 : 0;
|
||||
k1 = simplex[c][2]>=3 ? 1 : 0;
|
||||
l1 = simplex[c][3]>=3 ? 1 : 0;
|
||||
// The number 2 in the "simplex" array is at the second largest coordinate.
|
||||
i2 = simplex[c][0]>=2 ? 1 : 0;
|
||||
j2 = simplex[c][1]>=2 ? 1 : 0;
|
||||
k2 = simplex[c][2]>=2 ? 1 : 0;
|
||||
l2 = simplex[c][3]>=2 ? 1 : 0;
|
||||
// The number 1 in the "simplex" array is at the second smallest coordinate.
|
||||
i3 = simplex[c][0]>=1 ? 1 : 0;
|
||||
j3 = simplex[c][1]>=1 ? 1 : 0;
|
||||
k3 = simplex[c][2]>=1 ? 1 : 0;
|
||||
l3 = simplex[c][3]>=1 ? 1 : 0;
|
||||
// The fifth corner has all coordinate offsets = 1, so no need to look that up.
|
||||
|
||||
float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
|
||||
float y1 = y0 - j1 + G4;
|
||||
float z1 = z0 - k1 + G4;
|
||||
float w1 = w0 - l1 + G4;
|
||||
float x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords
|
||||
float y2 = y0 - j2 + 2.0*G4;
|
||||
float z2 = z0 - k2 + 2.0*G4;
|
||||
float w2 = w0 - l2 + 2.0*G4;
|
||||
float x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords
|
||||
float y3 = y0 - j3 + 3.0*G4;
|
||||
float z3 = z0 - k3 + 3.0*G4;
|
||||
float w3 = w0 - l3 + 3.0*G4;
|
||||
float x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords
|
||||
float y4 = y0 - 1.0 + 4.0*G4;
|
||||
float z4 = z0 - 1.0 + 4.0*G4;
|
||||
float w4 = w0 - 1.0 + 4.0*G4;
|
||||
|
||||
// Work out the hashed gradient indices of the five simplex corners
|
||||
int ii = i & 255;
|
||||
int jj = j & 255;
|
||||
int kk = k & 255;
|
||||
int ll = l & 255;
|
||||
uint8_t gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32;
|
||||
uint8_t gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32;
|
||||
uint8_t gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32;
|
||||
uint8_t gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32;
|
||||
uint8_t gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32;
|
||||
|
||||
// Calculate the contribution from the five corners
|
||||
float t0 = 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0;
|
||||
if(t0<0) n0 = 0.0;
|
||||
else {
|
||||
t0 *= t0;
|
||||
n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
|
||||
}
|
||||
|
||||
float t1 = 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1;
|
||||
if(t1<0) n1 = 0.0;
|
||||
else {
|
||||
t1 *= t1;
|
||||
n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
|
||||
}
|
||||
|
||||
float t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2;
|
||||
if(t2<0) n2 = 0.0;
|
||||
else {
|
||||
t2 *= t2;
|
||||
n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
|
||||
}
|
||||
|
||||
float t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3;
|
||||
if(t3<0) n3 = 0.0;
|
||||
else {
|
||||
t3 *= t3;
|
||||
n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
|
||||
}
|
||||
|
||||
float t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4;
|
||||
if(t4<0) n4 = 0.0;
|
||||
else {
|
||||
t4 *= t4;
|
||||
n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
|
||||
}
|
||||
|
||||
// Sum up and scale the result to cover the range [-1,1]
|
||||
return 27.0 * (n0 + n1 + n2 + n3 + n4);
|
||||
}
|
||||
|
||||
|
||||
int fastfloor( const float x ) { return x > 0 ? (int) x : (int) x - 1; }
|
||||
|
||||
float dot( const int8_t* g, const float x, const float y ) { return g[0]*x + g[1]*y; }
|
||||
float dot( const int8_t* g, const float x, const float y, const float z ) { return g[0]*x + g[1]*y + g[2]*z; }
|
||||
float dot( const int8_t* g, const float x, const float y, const float z, const float w ) { return g[0]*x + g[1]*y + g[2]*z + g[3]*w; }
|
|
@ -1,171 +0,0 @@
|
|||
/* Copyright (c) 2007-2012 Eliot Eshelman
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
#ifndef SIMPLEX_H_
|
||||
#define SIMPLEX_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/* 2D, 3D and 4D Simplex Noise functions return 'random' values in (-1, 1).
|
||||
|
||||
This algorithm was originally designed by Ken Perlin, but my code has been
|
||||
adapted from the implementation written by Stefan Gustavson (stegu@itn.liu.se)
|
||||
|
||||
Raw Simplex noise functions return the value generated by Ken's algorithm.
|
||||
|
||||
Scaled Raw Simplex noise functions adjust the range of values returned from the
|
||||
traditional (-1, 1) to whichever bounds are passed to the function.
|
||||
|
||||
Multi-Octave Simplex noise functions compine multiple noise values to create a
|
||||
more complex result. Each successive layer of noise is adjusted and scaled.
|
||||
|
||||
Scaled Multi-Octave Simplex noise functions scale the values returned from the
|
||||
traditional (-1,1) range to whichever range is passed to the function.
|
||||
|
||||
In many cases, you may think you only need a 1D noise function, but in practice
|
||||
2D is almost always better. For instance, if you're using the current frame
|
||||
number as the parameter for the noise, all objects will end up with the same
|
||||
noise value at each frame. By adding a second parameter on the second
|
||||
dimension, you can ensure that each gets a unique noise value and they don't
|
||||
all look identical.
|
||||
*/
|
||||
|
||||
//from http://www.6by9.net/simplex-noise-for-c-and-python/
|
||||
|
||||
// Multi-octave Simplex noise
|
||||
// For each octave, a higher frequency/lower amplitude function will be added to the original.
|
||||
// The higher the persistence [0-1], the more of each succeeding octave will be added.
|
||||
float octave_noise_2d(const float octaves,
|
||||
const float persistence,
|
||||
const float scale,
|
||||
const float x,
|
||||
const float y);
|
||||
float octave_noise_3d(const float octaves,
|
||||
const float persistence,
|
||||
const float scale,
|
||||
const float x,
|
||||
const float y,
|
||||
const float z);
|
||||
float octave_noise_4d(const float octaves,
|
||||
const float persistence,
|
||||
const float scale,
|
||||
const float x,
|
||||
const float y,
|
||||
const float z,
|
||||
const float w);
|
||||
|
||||
|
||||
// Scaled Multi-octave Simplex noise
|
||||
// The result will be between the two parameters passed.
|
||||
float scaled_octave_noise_2d( const float octaves,
|
||||
const float persistence,
|
||||
const float scale,
|
||||
const float loBound,
|
||||
const float hiBound,
|
||||
const float x,
|
||||
const float y);
|
||||
float scaled_octave_noise_3d( const float octaves,
|
||||
const float persistence,
|
||||
const float scale,
|
||||
const float loBound,
|
||||
const float hiBound,
|
||||
const float x,
|
||||
const float y,
|
||||
const float z);
|
||||
float scaled_octave_noise_4d( const float octaves,
|
||||
const float persistence,
|
||||
const float scale,
|
||||
const float loBound,
|
||||
const float hiBound,
|
||||
const float x,
|
||||
const float y,
|
||||
const float z,
|
||||
const float w);
|
||||
|
||||
// Scaled Raw Simplex noise
|
||||
// The result will be between the two parameters passed.
|
||||
float scaled_raw_noise_2d( const float loBound,
|
||||
const float hiBound,
|
||||
const float x,
|
||||
const float y);
|
||||
float scaled_raw_noise_3d( const float loBound,
|
||||
const float hiBound,
|
||||
const float x,
|
||||
const float y,
|
||||
const float z);
|
||||
float scaled_raw_noise_4d( const float loBound,
|
||||
const float hiBound,
|
||||
const float x,
|
||||
const float y,
|
||||
const float z,
|
||||
const float w);
|
||||
|
||||
|
||||
// Raw Simplex noise - a single noise value.
|
||||
float raw_noise_2d(const float x, const float y);
|
||||
float raw_noise_3d(const float x, const float y, const float z);
|
||||
float raw_noise_4d(const float x, const float y, const float, const float w);
|
||||
|
||||
|
||||
int fastfloor(const float x);
|
||||
|
||||
float dot(const int8_t* g, const float x, const float y);
|
||||
float dot(const int8_t* g, const float x, const float y, const float z);
|
||||
float dot(const int8_t* g, const float x, const float y, const float z, const float w);
|
||||
|
||||
|
||||
// The gradients are the midpoints of the vertices of a cube.
|
||||
static const int8_t grad3[12][3] = {
|
||||
{1,1,0}, {-1,1,0}, {1,-1,0}, {-1,-1,0},
|
||||
{1,0,1}, {-1,0,1}, {1,0,-1}, {-1,0,-1},
|
||||
{0,1,1}, {0,-1,1}, {0,1,-1}, {0,-1,-1}
|
||||
};
|
||||
|
||||
|
||||
// The gradients are the midpoints of the vertices of a hypercube.
|
||||
static const int8_t grad4[32][4]= {
|
||||
{0,1,1,1}, {0,1,1,-1}, {0,1,-1,1}, {0,1,-1,-1},
|
||||
{0,-1,1,1}, {0,-1,1,-1}, {0,-1,-1,1}, {0,-1,-1,-1},
|
||||
{1,0,1,1}, {1,0,1,-1}, {1,0,-1,1}, {1,0,-1,-1},
|
||||
{-1,0,1,1}, {-1,0,1,-1}, {-1,0,-1,1}, {-1,0,-1,-1},
|
||||
{1,1,0,1}, {1,1,0,-1}, {1,-1,0,1}, {1,-1,0,-1},
|
||||
{-1,1,0,1}, {-1,1,0,-1}, {-1,-1,0,1}, {-1,-1,0,-1},
|
||||
{1,1,1,0}, {1,1,-1,0}, {1,-1,1,0}, {1,-1,-1,0},
|
||||
{-1,1,1,0}, {-1,1,-1,0}, {-1,-1,1,0}, {-1,-1,-1,0}
|
||||
};
|
||||
|
||||
|
||||
// Permutation table. The same list is repeated twice.
|
||||
// removed const
|
||||
extern uint8_t perm[512];
|
||||
|
||||
|
||||
// A lookup table to traverse the simplex around a given point in 4D.
|
||||
static const uint8_t simplex[64][4] = {
|
||||
{0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
|
||||
{0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
|
||||
{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
|
||||
{1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
|
||||
{1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
|
||||
{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
|
||||
{2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
|
||||
{2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}
|
||||
};
|
||||
|
||||
|
||||
#endif /*SIMPLEX_H_*/
|
Reference in a new issue