
Bachelor Thesis

Implementing Delay-Tolerant Routing
for a Decentralized Instant Messenger

Fakultät IV - Elektrotechnik und Informatik

Internet Network Architectures

Research Group of Prof. Anja Feldmann, Ph.D.

Felix Ableitner
22. Juli 2016

Prüferin: Anja Feldmann, Ph. D.
Betreuer: Theresa Enghardt, M.Sc.

Mirko Palmer, M.Sc.

Ich versichere an Eides statt, dass ich diese Arbeit selbständig verfasst und nur
die angegebenen Quellen und Hilfsmittel verwendet habe.

Datum Felix Ableitner

Zusammenfassung
Zentralisierte Plattformen wie Facebook oder Google werden immer populärer.
Auf diesen Plattformen haben Firmen die volle Kontrolle über Nutzerdaten.
Dezentralisierte Software funktioniert ohne jede Kontrolle durch Firmen, und
kann Kontrolle an die Nutzer zurückgeben. Allerdings ist dezentralisierte Soft-
ware viel komplizierter zu entwickeln, weil Knoten in einem Peer-to-Peer-Netzwerk
kommunizieren müssen. Probleme können nicht einfach mit einem zentralen
Server gelöst werden.

In dieser Arbeit nehmen wir einen bestehenden, dezentralisierten Instant Mes-
senger, und erweitern das Protokoll. Vorher wurden Nachrichten auf eine sehr
ineffiziente Weise verschickt, und konnten nicht zugestellt werden, wenn der Ziel-
knoten offline ist. Frühere Forschung bietet Protokolle für entweder dezentral-
isiertes, oder verzögerungstolerantes Routing (Englisch: Delay-Tolerant Rout-
ing). Jedoch bietet kein Protokoll beide Features. Aus diesem Grund entwerfen
und implementieren wir ein eigenes Protokoll basierend auf “Spray and Wait”
und AODVv2. Das Protokoll nutzt Relay-Knoten um Nachrichten zwischenspe-
ichern, bis sie zugestellt werden können. Dazu kommt ein effizienten Routing-
Protokoll, das Ressourcennutzung minimiert.

Das Ergebnis ist eine Proof of Concept-Implementierung für einen Instant Mes-
senger, der komplett dezentralisiert ist. Dennoch ist mehr Arbeit nötig, um die
Nachrichtenzustellung zu verbessern, wenn der Zielknoten offline ist. Außerdem
sollten wichtige Features implementiert werden, etwa die Unterstützung von
Mediendateien. Während unser Protokoll speziell für einen Instant Messenger
entworfen ist, könnte es auch für andere Szenarien angemessen sein.

Abstract
Centralized platforms like Facebook or Google are becoming more and more
popular. On these platforms, companies have complete control over user data.
Decentralized software works without any company’s control, and can be used
to give control back to users. However, developing software without any central
server is much more complicated, as nodes have to communicate in a peer-to-
peer network, where problems can not simply be solved with a central server.

In this thesis, we take an existing, decentralized instant messenger app, and
extend the protocol. Previously, messages were sent in a very inefficient way,
and could not be delivered if the destination node was offline. Previous re-
search provides protocols for either decentralized or delay-tolerant routing, but
no protocol that has both features. For this reason, we design and implement
a custom protocol based on “Spray and Wait” and AODVv2. The protocol uses
relay nodes that buffer messages until they can be delivered. In addition, an
efficient routing protocol is used to minimize resource usage.

The result is a proof of concept implementation of an instant messenger that
is completely decentralized. Still, more work is needed to improve the message
delivery in cases where the destination is offline. Also, new features should
be implemented, like support for media files. While our protocol is specifically
designed for an instant messenger, it may also be appropriate for other scenarios.

Contents

1 Introduction 1

2 Related Work 3

2.1 Other Messengers . 3

2.2 Decentralized Routing . 4

3 Ensichat Overview 9

3.1 Network Topology . 9

3.2 Message Sending . 11

3.3 Core Library . 12

3.4 Server . 13

3.5 Android App . 14

4 Approach to Decentralized Routing 16

4.1 Message Relays . 16

4.2 Routing . 20

5 Implementation 23

5.1 Delay-Tolerant Routing . 23

5.2 Unit Tests . 25

5.3 Integration Tests . 25

6 Security Considerations 28

6.1 Header Data is not Signed . 28

6.2 Perfect Forward Secrecy . 28

6.3 Man in the Middle Attack . 28

6.4 Sybil Attack . 29

7 Conclusion 30

8 References 31

1 Introduction

Today, more and more people use centralized platforms like Facebook, Google, or
WhatsApp. This is a problem, because it gives a lot of control to the operators of
these platforms. They can easily monitor communications, access user data, and
censor their users, all without any oversight. Even if one trusts those platforms,
law enforcement agencies may force them to abuse this power against their users
(for example with national security letters in the US). In contrast, decentralized
software has no single point of failure. Data is stored on the user’s own devices,
so unauthorized access is much more difficult. Communication is done in a
peer-to-peer topology, which makes the software very resilient against failure or
censorship on the network level. Additionally, decentralized software can take
advantage of unused resources on user devices (CPU, storage, network). On
the other hand, many problems that are easily solved in centralized software
become very difficult challenges in decentralized software.

One of the most popular examples of decentralized software is the bittorrent
protocol [4]. It takes advantage of file sharding to distribute files between many
different clients, using their bandwidth for distribution. This means there is no
need for an expensive central server, but idle resources on user devices can be
used instead. If the system is designed properly, it will scale automatically to
support more users. At the same time, it allows the distribution of copyrighted
content. To take content down, copyright owners would have to shut down ev-
ery single node hosting the content, which proves impossible in practice. While
copyright infringement is morally questionable, it proves the censorship resis-
tance of decentralized data distribution. In contrast, the centralized Napster
server was easily taken down by law enforcement. Another advantage is the
security of decentralized networks, where nodes do not have to trust anyone
else. For example, the Bitcoin network secures a total investment of around 10
billion euros.

In this thesis, we want to show that it is possible to create a chat service that
is completely decentralized. We do this by extending an instant messenger app
for Android that we built previously, called Ensichat. Ensichat uses peer-to-
peer communication over Bluetooth and Internet for message transmission. It
is available under an open source license on Github. An overview over the
current features and project structure will be given in a later chapter. There
are two main problems in the underlying protocol preventing Ensichat from

1

becoming a fully featured instant messenger. First, it uses a simple flood routing
algorithm, which means every message is sent to every node. This is obviously
very inefficient. We will review a selection of existing, decentralized routing
algorithms and implement one that is suitable to our use case. Second, messages
can not be delivered if the destination node is offline. Instead, the message is
dropped silently. Based on previous research, we will develop a solution to this
problem that does not rely on any centralized server, and implement it.

The thesis is structured as follows. Section 2 gives an overview over other
centralized and decentralized messengers, as well as related scientific work about
decentralized routing. Section 3 describes the project structure of Ensichat. In
section 4 we give a general, high-level overview of our custom routing protocol.
Section 5 describes the details of our implementation. After this, section 6
describes possible attack vectors, and how they can be mitigated. Finally, we
draw our conclusions in section 7.

2

2 Related Work

There are various messengers that are decentralized to some degree. We will
have a look at them, and what kind of network topology they use. Additionally,
we will describe what advantages and disadvantages their approach to decen-
tralization has. Our goal for this thesis is to create an instant messenger that
has end-to-end encryption, and a network structure that does not require any
servers. This should make it easier to add new nodes to the network, without
any extra setup. Additionally, the protocol should be efficient for usage on mo-
bile networks, and allow media transfers. Other than decentralized messengers,
we also look at WhatsApp as an example of a centralized instant messenger.

After this, we will have a look at scientific work in the area of decentralized
messengers, as well as delay-tolerant routing. This includes a general overview
over the existing work and important concepts, as well as specific routing algo-
rithms. Here, we want to find an algorithm that is applicable to our use case,
and which we can implement later.

2.1 Other Messengers

XMPP works similar to email. There are various servers, which connect to
each other and exchange messages on behalf of users. Each user is registered to
one server, and has an ID of the form username@example.com. This approach
to identification has the advantage of being familiar to users, who can simply
login with a username and password. However, this model of registering at
a single server could result in a centralization of users at a single, popular
service. In contrast, Ensichat does not rely on server domains for addressing.
Instead, each node has an address which is the address of their public key.
As another weakness, XMPP only supports end-to-end encryption through the
OTR protocol, which is not supported by all clients. The protocol itself is
entirely text-based, so it takes up more bandwidth than a binary format. This
is especially a concern with mobile devices, and when used with media files,
which have to be base64 encoded.

IRC is a decentralized message protocol that is mostly used for group chats,
but also supports private messaging. The protocol only supports text messages.
It has a similar network architecture as XMPP, with a strict separation between
servers and clients. Clients can only connect to servers, while servers can connect
with clients and other servers. This results in a spanning tree, where each server

3

acts as a central node for the rest of the network it sees. While connections are
typically secured with TLS, users always have to trust the servers, because they
can read and even change all messages.

WhatsApp is a good example of a centralized instant messenger. It shows what
is possible if developers do not have to worry about decentralization, but can put
a great focus on usability. This is especially helpful for less experienced users.
For example, it uses phone numbers for user identification, so users do not have
to exchange any additional ID. Automatic end-to-end encryption was recently
enabled for all users. Internally, WhatsApp uses a protocol based on XMPP.
However, there is no way to use standard XMPP clients with WhatsApp, and
the topology is entirely centralized. Even though end-to-end encryption makes
it impossible to read message contents, WhatsApp can access all metadata and
analyze it.

Matrix is a relatively new project, that aims to become a standard for decen-
tralized, real-time communication over the Internet [1]. The network architec-
ture is similar to XMPP, with a set of servers that connect to each other, and
clients that connect only to servers. Matrix has some advantages over XMPP,
like history synchronization and better support for multiple devices. Also, there
are plugins which allow “bridging” between Matrix and other networks like IRC.
It remains to be seen how successful this project will be compared to the estab-
lished alternatives.

In short, none of these messengers fit our requirements of being decentralized
and delay-tolerant. XMPP and IRC both use a strict separation between clients
and servers, and require considerable effort to run these servers. WhatsApp is
not decentralized, but has great usability. Matrix has a somewhat wider goal
of becoming a standard for all live online communication, while Ensichat is
currently focusing on mobile chat only.

2.2 Decentralized Routing

In this section, we will have a look at existing research in the area of delay-
tolerant networks and decentralized routing.

Delay-Tolerant Network: A delay-tolerant network is one that allows mes-
sage delivery even if end-to-end connection may never be present [9, 12]. Instead,
data is stored and forwarded by intermediary nodes. Both nodes and links may
be unreliable, as nodes move around. Especially mobile nodes usually have lim-

4

ited resources, like buffer space for messages, processing power, battery power
and bandwidth. The effectiveness of a protocol can be measured with some key
aspects: delivery latency, delivery ratio and bandwidth usage. A good routing
algorithm should maximize probability of message delivery, while minimizing re-
source usage and delay. As we will see, most delay-tolerant routing algorithms
discussed here are intended for mesh networks. The papers we reviewed specif-
ically assume that nodes move around, and take advantage of this for message
delivery. We will look for ways to take advantage of Internet connections, too.

Replication and Knowledge: Decentralized routing algorithms can be cate-
gorized using two properties, replication and knowledge. Replication means that
a message is sent multiple times, usually over different routes. This makes it
more likely that at least one copy reaches the destination, but increases resource
usage. Pure replication strategies send each message over the entire network,
which greatly increases the usage of bandwidth and other resources on all nodes.
On the other hand, knowledge is used to send a message across the “best” route
over the network. Pure knowledge strategies only send a single message. This
minimizes resource usage, but increases the risk that the message is lost, for
example if a connection is closed during the transfer. There are various simple
algorithms which use only one strategy, while other algorithms take advantage
of both knowledge and replication.

Example Algorithms: One of the simplest routing algorithms based on repli-
cation is epidemic routing. When two nodes connect to each other, they ex-
change all undelivered messages they have, so that each node has all messages.
This means that every message will eventually be delivered to every single node.
While the strategy is sure to deliver all messages with minimal delay, it also has
a very high resource usage. This is because every node has to transfer every
message, which does not scale well.

An example for a knowledge-based routing strategy is location-based routing.
In this strategy, nodes need to know the position of all other nodes. When
sending a message, it is always forwarded to the neighbor that is closest to the
destination node. Unfortunately, this strategy is not practical for Ensichat, as
the destination node has no way to tell other nodes its position, without sending
a message itself.

Jones et al present a routing protocol based on epidemic routing [8]. Instead
of using epidemic routing to transmit messages, it transfers information about
the network structure. Nodes can then use this information to send messages

5

directly to the target node. However, it means that every node needs to know
about the entire network structure. This is not feasible if the network size gets
too big, or if the network changes often.

Spray andWait: This is an advanced routing scheme that combines replication
and knowledge [13]. It limits the number of message copies and transmissions
without compromising performance, and is highly scalable. The algorithm uses
two phases. In the spray phase, messages are forwarded to a number of relays
(this number is determined by the estimated network size). In the wait phase,
relays wait until they encounter the destination, and deliver the message directly
to it. The spray phase uses a binary spreading algorithm, so that each node
forwards half of its message copies, and keeps the other half. This goes on until
there is only one copy left on each node, and limits the number of transmissions.
The protocol is very scalable, simple and efficient, making it a good fit for our
use case. It assumes only direct connections between nodes, so we will have to
make some changes to support connections over the Internet.

Spray and focus: This algorithm is an improvement over spray and wait by
the same authors [14]. It uses the same logic for the spray phase, but changes to
the wait phase make it more efficient. Instead of just waiting for the destination
node, relays can forward their message copy to a different node, if that node has
encountered the destination more recently. This algorithm is more complicated,
as every node needs to keep track of when it has encountered any other node.
It is also not clear if this will be an improvement in our case, as we can take
advantage of Internet nodes for relaying.

Utility Functions: The usage of last encounter time as a metric is an example
of a “utility function”. Some routing strategies take advantage of one or more
utility functions to determine how messages should be forwarded [15]. Utility
functions can be destination dependent, like “Age of Last Encounter”. Here, mes-
sages are forwarded to nodes that have seen the destination node most recently.
“History of Past Encounters” is an extension of this concept, that uses more
information, like frequency of encounters or average encounter time. “Pattern
of Locations Visited” takes advantage of nodes frequenting the same location as
the target node. The “Social Networks” function tries to forward a message to
friends or family of the destination. Destination independent functions use char-
acteristics of the relaying node itself. Among them are “Amount of Mobility”,
“Node Resources”, or “Trustworthiness”.

Relay Nodes: Utility functions like the ones explained are used Spyropoulos

6

et al for an alternative way to improve spray and wait [16]. This strategy
does not just pick the first node it encounters as message relay. Instead, it
uses a utility function to choose the best available node as relay. Examples
for utility functions presented in the paper include Last-Seen-First (nodes that
encountered the destination most recently), Most-Mobile-First, or Most-Social-
First. The paper notes that a malicious node could advertise a very high fake
utility value, and absorb a large number of messages. For this reason, a utility
function that is not advertised by the potential relay itself would be preferable.

Proactive and Reactive: Decentralized routing algorithms can be separated
into proactive and reactive [11]. Proactive (or table-driven) protocols always try
to keep network information up to date. This means every node has to maintain
routing information for every other node. This information is periodically up-
dated as the network topology changes. Proactive protocols are best used when
the network is mostly static, as messages can be sent without any delay for
route discovery. In contrast, reactive (or on-demand) protocols only try to find
a route when they have to send a message to an unknown node. The sending
node will ask other nodes for routing information towards the destination node,
and send the message when it gets this information. While a route is active,
route maintenance is done based on topology changes. If a route is not used, it
times out after some delay. Reactive protocols have a potentially slower initial
connection, but use less resources if only few messages are sent. In addition to
proactive and reactive protocols, there are also hybrid protocols which combine
the advantages of reactive and proactive routing. But these protocols are much
more complicated to implement, as they need much more additional logic to
work. Because our use case has moving nodes, short connections and sparse
messages, a reactive protocol would be best suited.

AODVv2: “Ad Hoc On-demand Distance Vector Version 2” is a draft for a
decentralized, reactive routing protocol [3]. When a node wants to send a mes-
sage and does not know a route towards the destination node, it sends a route
request, which is flooded over the network. When the destination node receives
the route request, it sends back a route reply. Each node along the way stores
the next hop towards origin and destination in its routing table. Messages can
then be sent along this path. There are also route error messages, which will be
sent if a connection to a node is closed, or if a message can not be forwarded.
Each node has a sequence number that is incremented with every message, so
other nodes can see how recent a message is.

7

AODVv2 seems perfect for our use case. However, it does not support delay-
tolerant messaging. For this reason, we will combine AODVv2 with the message
relays from spray and wait, to create a routing protocol that has both decen-
tralized and delay-tolerant routing.

8

3 Ensichat Overview

Ensichat is a decentralized instant messenger. It is written in the Scala program-
ming language and licensed under the GNU General Public License, version 3.
The project is available on Github [2]. It is divided into three components. The
most important one is the core library, which handles all network connectivity,
message serialization and routing. The Android app is the main user facing
component, and provides an easy-to-use interface. The server project is a thin
wrapper around the core library, which allows users to run Ensichat on their
server and support the network.

3.1 Network Topology

Figure 1: Possible network topologies. Black nodes are servers, white nodes are
mobile devices. Filled edges represent Internet connections, while dashed edges
are Bluetooth connections.

9

As mentioned before, Ensichat uses a peer-to-peer topology for communication
between nodes. All nodes are equal, can move around, and connect or discon-
nect at any time. This explicitly includes server nodes. Servers are required
because Internet Service Provides block any incoming connections on 4G mo-
bile networks. The same is usually true on public wifi networks. Instead of
connecting to other mobile nodes directly, we use servers as intermediaries to
forward messages. In contrast to XMPP and IRC, the protocol itself does not
differentiate between server nodes and nodes running on a phone. Although
Ensichat uses servers, it is still fully decentralized. The servers do not form a
central point of failure, because everyone can start a new server, that has the
same capabilities as all other servers. This makes the protocol trustless, because
there is no need to trust any particular node. Users only need to trust the math
underlying the system. Various possible topologies are shown in Figure 1. Note
that Ensichat also works without servers, and that no specific network topology
is required.

Ensichat supports connections over Internet and Bluetooth. The only differ-
ence between Internet and Bluetooth connections is how they are established.
Internet connections are opened when a node connects to a known IP address.
Bluetooth connections are opened by nodes continuously scanning for other
Bluetooth devices, and connecting if they also run Ensichat. Note that Internet
connections are only supported between server-server or phone-server, and Blue-
tooth connections only between phone-phone. This limitation can be removed
in future versions of the implementation. Once a connection is opened, the
same encoding and protocol is used for all messages. This means that there is
no difference between a network consisting only of Internet nodes, or one made
only of Bluetooth nodes, or a mixed network, except for transport attributes like
range or bandwidth. Every node has an address, which is the SHA-256 hash of
its public key. The asymmetric keys are generated with RSA, and have a 4096
bit key size. When two devices connect, they first exchange a ConnectionInfo
message, which contains each device’s public key. This allows for messaging
between neighboring nodes without any additional setup. If a node wants to
send a message, it needs the public key of the target node.

10

3.2 Message Sending

Figure 2: Structure of a message header. Message ID and time are only included
for user messages.

When sending a message, the sender computes the target’s public key, which is
written to the message header, along with other information like sender address,
time, and message type (see Figure 2). All user messages are signed and use
end-to-end encryption. Some messages are sent automatically by the protocol,
like the AODVv2 messages we will implement later. These are only signed, not
encrypted, as other nodes also have to read them. Each message also contains
a sequence number, which is used to determine if a node has seen a particular
message before. If a message has been received before, the new copy is discarded.
For routing, Ensichat currently uses a simple flooding algorithm. To send a
message, the sender simply forwards it to all neighbors, who also forward it to
their neighbors, and so on. If the destination node is not online, the delivery
will silently fail.

11

3.3 Core Library

The core library handles all networking and protocol operations, including mes-
sage transmission over the Internet (TCP/IP). Various classes represent the
messages that are sent over the network, and handle their (de-)serialization.
For sending, message headers and bodies are both converted to a binary for-
mat, which is more space efficient than a text based one. Figure 3 gives an
overview that shows how the different projects and classes relate to each other.
All routing functionality is implemented in the core package. The exception is
the BluetoothInterface, which provides connectivity over Bluetooth using An-
droid specific APIs. Both the Android ChatService and the server Main classes
use the ConnectionHandler class. While the server project provides only min-
imal functionality to control the core, the Android project has various classes
that display contacts, chats, and other information.

• The core library’s central class is called ConnectionHandler. It provides
a public interface for other projects using the library. There are various
functions that allow sending a message to a particular node, or getting
information about other nodes. It automatically handles high-level routing
functions, like requesting a route to send a message. All other core classes
are controlled by the ConnectionHandler.

• The Crypto class handles all operations that are related to cryptography.
This includes key generation, message signing and encryption, as well as
signature verification and decryption.

• The Database class currently stores message history and the list of con-
tacts. In the future, it can be extended to store more information.

• The Router class handles message forwarding to neighbor nodes, making
sure they are sent out through the right connection.

• The TransmissionInterface and its implementations handle the actual
transmission of serialized data. New transport methods can easily be
implemented with this interface.

The library is platform independent, and has interfaces that allow it to run on
Android as well as desktops and servers. Most of the changes discussed in this
thesis will affect the core library.

12

Figure 3: Class diagram of the core, library and Android projects. Only the
most important classes are shown in this diagram.

3.4 Server

The server project is a thin wrapper around the core library. As mentioned
before, it is required because smartphones do not usually allow incoming con-
nections. This means we can not easily connect directly to another node over
the Internet. Instead, we use servers running the Ensichat library to provide
connectivity between mobile nodes. It implements the interfaces required by the
library, so that it can be run as a standard command line executable. A startup
script for systemd-based Linux distributions is also included. The project is in-
tended for enthusiast users who want to help the network, or for users who are
especially concerned about their privacy. These users can put the project onto
a web server, and add the IP address in the Android app. The app will then
always attempt to connect to this server and use it for message delivery. We
provide a default server, which is preconfigured in the app. Different servers con-
nect to each other, forming a mesh where messages are forwarded and delivered.
In the course of this thesis, we will take further advantage of their availability

13

and storage space to act as relays for offline messaging (Section 4.2).

3.5 Android App

The Android application is the main user-facing component of Ensichat. Its
goal is to provide an easy-to-use messenger application, similar to other instant
messengers. After starting the app for the first time, the user can set their name
and status, which can be seen by other users. The main screen shows a list of
contacts, which is empty at first. The top bar shows information about current
connections, including the usernames of connected nodes. Tapping it gives a full
list of connected nodes, with their usernames and statuses. These can simply be
added as contacts by tapping on them. In the contact list, tapping on a contact
opens a chat view. At the moment, only plain text messages are supported.
In the future, it should also be possible to send images or other media files.
The complexity of decentralized routing is mostly hidden, and only visible in
the list of connections, and in a configuration option for server addresses. For
every device, an identicon is shown. This identicon is a simple graphic that
is deterministically generated based on the device’s public key [7]. Users can
compare the identicon shown on their device with that on their contacts device,
to ensure they have the correct public key, and avoid a man-in-the-middle attack.
The app consists of some central classes:

• The most important class is the ChatService. It provides a background
service that wraps around the library’s ConnectionHandler, and can be
used by other classes.

• The ContactsFragment class shows a list of all contacts a user has, and
allows to open chats.

• Chats are shown in the ChatFragment, where users can also write new
messages.

• Other Fragments and Activities show information like app settings, profile
information, and active connections.

• Together with other related classes, the BluetoothInterface handles all
Bluetooth connectivity, and allows Ensichat to send messages over Blue-
tooth.

14

All in all, the Android app provides a wrapper around the core library, that
hides all the internals of decentralized routing. This should make it easy to
grasp for all users.

15

4 Approach to Decentralized Routing

Based on our previous research, we develop a routing algorithm that uses both
delay-tolerant and decentralized routing. This algorithm will be based on the
papers “Spray and Wait” and “Routing in Delay-Tolerant Networks Comprising
Heterogeneous Node Populations” for message relays. The forwarding logic is
based on the AODVv2 protocol. Our goal is to minimize data transfers, while
ensuring successful delivery with minimal delay. While the app is currently used
only by a small number of users, we hope that the protocol will easily scale to
thousands of users. This is because only few messages have to be sent to discover
routes and keep the network running. However, we rely on the assumption that
each node sends relatively few messages. If this assumption is not true, scaling
may be hindered, as route discovery is relatively expensive for the network.

4.1 Message Relays

Retry Number Exact Retry Delay Approx. Retry Delay
1 101s ~10s
2 102s ~2m
3 103s ~17m
4 104s ~3h
5 105s ~28h
6 106s ~12d

Table 1: Retry times for message delivery.

As described by Spyropoulos et al [13], we use relays as intermediary nodes for
message delivery, instead of sending the message directly to the target node. The
relays immediately try to send the message to the target node using AODVv2
route discovery. If no route is found, the message is stored in a buffer, and
we try to send it again after predefined intervals (see Table 1). The use of a
message buffer with automatic retries ensures that messages do not get lost if the
target node is currently not reachable. It also allows message delivery between
two nodes that are never online at the same time. These retry intervals have to
achieve a balance between fast message delivery, and low resource usage, because
every route discovery floods messages over the entire network. Our assumption
here is that nodes are online most of the time. If a node is offline for some
hours already, it is unlikely that it will come online very soon. If the first route
requests failed, we wait longer for subsequent requests, to avoid high network

16

Figure 4: A is sending a message to B. The message is buffered on relays (marked
R), and delivered when B connects.

load. However, this poses a limitation as users might receive messages only after
a significant delay, even if they were online between route requests. The current
retry values are picked arbitrarily and are relatively high. We hope that future
research and usage testing will find better retry intervals. The intervals could
also be set by each node individually, depending on their available resources.

As an alternative to fixed retry intervals, nodes connecting to an existing mesh
could actively ask for messages, by flooding a request for buffered message over
the network. Relays could use this message as a trigger to start the route
discovery, and deliver the buffered message. Such an event based approach
means messages would be delivered almost immediately after the nodes connect,
whereas the current approach may take multiple hours of waiting in the worst
case. At the same time, fewer attempts at route discovery would be necessary,
reducing the overall resource usage. Unfortunately, we did not have time to
implement this improvement, but hope it can be done in the future.

17

Messages are removed from the relay’s buffer on any of the following conditions:

• A route to the target was found, and the message was sent to it

• We tried and failed to discover a route for six times

• Ensichat is stopped or restarted on the relay (because messages are only
stored in RAM)

After sending the message to relays, the sender also tries to discover a route and
send the message to the target. If this does not work, it uses the same retry
intervals. In contrast to relays, it keeps retrying the message delivery until it
receives a confirmation message from the destination node. The message itself
is stored in the persistent database, so it can also be accessed and resent after
a restart.

For relaying, we define a number of forwarding tokens. Each forwarding token
represents one copy of the message, without the bandwidth usage of transferring
the message itself multiple times. For the time being, we use a hard coded
value of 3 forwarding tokens for every message. If the network size increases
in the future, this value should also be increased according to the formulas by
Spyropoulos et al [15].

The first relay is chosen by the sender of a message among his direct neighbors.
For this, we use a simple utility function based on total connection time to a
node. For every node, we store the total cumulative time we were connected
to it. This means whenever we connect to a node n, we start a timer tn, and
stop it when we disconnect. When we want to send a message, we check this
connection time for every neighboring node, and pick the one with the highest
value for tn. The intuition behind this is that nodes with longer connection
time are better connected in general. This is especially true for Internet servers,
which are connected to many nodes, and should be picked as relays first. At
the same time, we do not have to rely on data that nodes report themselves,
keeping the network trustless. If a node is chosen as a relay, we forward b c2c of
our tokens to it, where c is the total number of tokens we have. This process
is repeated by the sender and relays until every node has only one token per
message left. Figure 4 shows how a message is transmitted over relays to the
destination node.

Due to the number of independent relays, it is very likely that every message
will be delivered soon. However, delivery can fail if none of the relays can reach
the destination. This can happen for any of the following reasons:

18

Waiting for neighbors

Neighbor connected

Forward f=b c2c
copies, set c = c - f

c > 1

Enter Wait Phase

yes

no

Figure 5: Flowchart of a node in the spray phase for a given message.

• Relays are taken offline for any reason

• The buffer gets too full, so some messages are dropped

• None of the relays can find a route to the destination node, and the mes-
sage expires

However, even if all relays fail, the message can still be delivered by the original
sender. As discussed earlier, the sender always keeps his own messages in the
buffer, until they are confirmed delivered. Once the message arrives at the des-
tination node, it will send a confirmation message back to the original sender
(but not to the relays). The same routing algorithm is used to send the confir-
mation message. A flow chart for the relaying logic can be found in Figure 5.
Figure 6 shows how messages are forwarded to relays, which spread it to other
relays and do a route discovery with AODVv2. After a node finds a route to the
destination, it is delivered, and the destination node sends back a confirmation.

19

Sender Relay Network Destination

Forward message with
b c2c forwarding tokens

[have > 1 forwarding tokens]

Forward message with
b c2c forwarding tokens

Search destination
with AODVv2

[Route to destination found]
Deliver message

Confirm message (us-
ing same algorithm)

Figure 6: Message transmission between devices. Note that the sender performs
the same discovery actions as the relay. Additional relays are not shown.

4.2 Routing

Our routing algorithm is inspired by AODVv2, but does not actually implement
the standard [3]. AODVv2 uses three types of messages for its routing. Route
Requests (RREQ) are sent to ask for a route to a specific destination address.
They are flooded over the entire network, until they reach the destination. When
a node receives an RREQ message addressed to it, it sends back a Route Reply
(RREP). Both RREQ and RREP contain the sender’s sequence number, so
other nodes can easily tell whether a message is recent or not. Additionally,
both message types contain a metric value, which in our case is the number of

20

Figure 7: Visualization of the AODVv2 route discovery process.

hops between the nodes.

When an intermediary node receives an RREQ message, it stores the neighbor
it first received the message from as next hop towards the sender. After that, it
forwards the message to its neighbors. The RREP will then come back through
the route formed by intermediary nodes. Each intermediary node then stores
the neighbor it first received the RREP from as previous hop toward the RREQ
destination node. After the RREQ and RREP have been delivered, a route
between the nodes has been established, and messages can be sent along it.
Figure 7 shows a graphical representation of the route discovery process. First,
the white node sends a route request, which is flooded over the entire network.
When the destination node (grey) receives the message, it sends back a route
reply. With the routing information on the intermediary nodes, a route between
white and grey is formed.

The third type of messages are Route Errors (RERR). These are sent to inform
that a route is no longer available, in a number of cases:

• An RREP message can not be delivered, because the next hop towards
the RREQ sender was disconnected.

• A connection to a neighbor was closed.

• An RERR message was received from a neighbor and is forwarded.

RERR messages are forwarded along all routes that used the broken link. Every
node that knows about the route will then mark it as invalid, and will request
a new route when needed.

ADOVv2 itself has many features which do not make sense for our use case.
The protocol uses IP addressing, which we have to replace with our addressing

21

based on 32 byte node addresses. Because this is a major change, we also do
not use the message format described in the AODVv2 protocol. This means
that our custom protocol is not compatible with any other AODVv2 implemen-
tation. AODVv2 also supports “router clients”. These are devices with their
own address, but which do not support the protocol itself. Instead, they rely
on other nodes to perform actual message transfers for them. We completely
leave out any functionality related to router clients, as all Ensichat nodes im-
plement the protocol. Before enabling any connection, AODVv2 checks that it
is bidirectional. This is always true in our case, both for Internet and Blue-
tooth connections. For this reason, we leave out all functionality related to
these checks. Additionally, AODVv2 has support for different “metric types”,
to determine the distance between nodes. For simplicity, we just use the hop
count, and leave out support for different metric types.

22

5 Implementation

In this section, we describe our changes to Ensichat, and what we had to do
to make our combination of decentralized and delay-tolerant routing work. We
also give an overview over the tests we implemented.

5.1 Delay-Tolerant Routing

To implement our new routing algorithm, we need a variety of new classes. The
easiest ones are the classes RouteRequest, RouteReply and RouteError. They
simply hold the message parameters, and provide methods for serialization to a
byte array, and deserialization back into an object. These classes represent the
messages which are used by the AODVv2 protocol for route discovery.

Sequence Numbers: AODVv2 requires every node to have a sequence number.
This number is a counter that is incremented and sent with every new message.
It has a maximum value of 65535 (the highest unsigned integer that fits into 2
bytes). After reaching this value, it starts again at 0. The sequence number is
included in RREQ, RREP and RERR messages to differentiate between them.
Any two message with the same sender and sequence number are treated as
identical. This is used to ignore a message if it has been received already, and
to determine which message from a specific node is more recent. Additionally,
text messages sent by Ensichat have a “Message ID”. This is a 4 byte counter
that is used to differentiate between user messages. A node can never send two
different messages with the same message ID. Contrary to the sequence number,
it is never reset, so it can also be used to refer to a specific message.

Message Sending: To send a message, we first have to request a route to the
destination node. As described before, this is done with a route request, which
is sent by the ConnectionHandler class whenever we try to send a message and
do not have a valid route towards the destination. When other nodes receive
the RREQ message, they forward it to their neighbors, and keep track of the
previous node where they first received the RREQ from. The address of this
node is stored as the next hop towards the sending node in the LocalRoutesInfo
class. Through this, a path is formed from destination to sender, by the nodes
between them. The destination node then sends back a route reply, which is
automatically passed along this path. Again, nodes store the previous node
where they received the RREP from as next hop towards the destination. After
the RREP arrives at the sender, a bidirectional path is formed between both

23

nodes, and normal messages can be sent. Figure 8 shows which classes are
involved in sending a message, and the different code path taken if we have to
perform a route discovery first.

Route Management: The routes themselves are stored as entries in the Lo-
calRoutesInfo class. Every entry contains the destination address, last known
sequence number of the destination, next hop towards the destination, and the
number of hops needed. Routes are in one of three states: Active, Idle or Invalid.
Routes are marked as active if they have been used in the last 5 seconds, after
this they are marked as idle. Routes are marked as invalid if a RouteError has
been reported for them. Invalid routes are ignored. Public methods provided
by LocalRoutesInfo are addRoute(), which adds a new route based on an RREQ
or RREP message, getRoute(), which returns a valid route for a given address
(or the None value), and connectionClosed() which marks an existing route as
invalid.

Rate Limiting: The class RouteMessageInfo keeps track of RREQ and RREP
messages that have been sent by the local node. This is to make sure we do
not spam the network with too many unnecessary protocol messages. Before we
sent any RREQ or RREP message, we use the method isMessageRedundant()
to check if we should actually send it. We only send a new message if there
has not been a message to this node in the last 300 seconds, and we have not
recently received route information from that node.

Relay Nodes: Whenever the user sends a new message, we also send this
message to relay nodes. The number of relays a message is forwarded to is
limited by forwarding tokens, which represent copies of the message. Currently,
every new message has the default of 3 tokens. Relays are picked with a utility
function based on the total time we were connected to a node. The longer we
were connected, the more likely we will choose it as a relay. The connection time
for each node is stored in the Database, and updated whenever we disconnect
from a node. To pick a relay, we first take a list of all our neighbors, and select
the total connection time for each node from the Database. After this, we sort
the nodes by longest connection time. We then forward b tokens2 c to the first
node in the sorted list. This process is repeated with subsequent nodes in the
list, until we only have 1 token left. Relays in turn use the same algorithm to
forward their extra tokens to other relays. Just like other nodes, relays also use
AODVv2 to attempt route discovery, and deliver messages to their destination.

Message Buffering: Both the original sender and the relays attempt to find

24

a route and deliver the message as soon as they first receive it. While the
route discovery is active, the message is stored in the MessageBuffer. This
class keeps track of all undelivered messages. Whenever a route to a new node
is discovered, the ConnectionHandler checks if we have any messages for that
node. If we do, the messages are removed from the buffer and sent over the
route to their destination. If no route can be found, the message is kept in the
buffer. We retry the route discovery at the intervals detailed in Table 1. If a
relay can not find a route after the 6th try (or about 12 days), the message
is deleted from the MessageBuffer. Relays also lose their buffered messages
if Ensichat is restarted, as the buffer is only stored in RAM at the moment.
However, the original sender keeps the message in its persistent database and
will keep retrying even after the 6th failed attempt at route discovery.

Message Confirmation: When the destination node receives a message, it
sends back a MessageReceived confirmation, containing the message ID of the
received message. The MessageReceived confirmation is sent with the same
algorithm, which means it will also use relays and AODVv2 routing. Only after
receiving this confirmation will the sender stop retrying the message delivery.
This ensures that every message will eventually reach the destination, but might
cause some additional network traffic.

5.2 Unit Tests

Most existing and new classes in the Ensichat library have unit tests. These
make sure that individual classes work correctly. For RREQ, RREP and RERR,
we added simple tests to verify that an existing message can be serialized, then
deserialized, and still has the same values as before. For the Router class, we
test that it sends messages to the correct neighbor, and that messages where we
do not have a valid route are handled correctly. For the LocalRoutesInfo class,
we check that the correct route is returned for a given destination, and that
timeouts are respected. The tests for RouteMessageInfo pass various RREQ
and RREP messages, and check that they are correctly allowed or disallowed,
based on properties like hop count or sequence number.

5.3 Integration Tests

To test our new implementation, we also wrote an integration test suite. It is
a simple wrapper around the Ensichat core library, which starts a number of

25

nodes on the local device, on different ports. These nodes are then connected
to each other, forming a virtual mesh.

The tests include a simple scenario called testNeighborSending(), which checks
that messages sent to a direct neighbor are delivered correctly, within a short
timeout. The testMeshMessageSending() function creates 8 virtual nodes, and
sends various messages between all of them, making sure that each message
is delivered correctly. Another function, testRouteChange(), creates a mesh,
then forces a route discovery by sending messages. After the messages have
been delivered, a single node is shut down, forcing route errors to be sent.
Subsequent messages have to use a different route to reach their destination.
Simple relaying is tested by testIndirectRelay(), which starts a few nodes, sends
a message, and shuts down the sending node. Only then is the destination node
connected to the mesh. This assures that relays actually deliver the message to
the destination node. Various other tests also exist, which test specific details
of the protocol and implementation.

After cloning the git repository, the integration tests can be run with the termi-
nal command ./gradlew integration:run. Ensichat uses 4096 bit public key
pairs, and generating them can considerably slow down tests. If this is the case,
the key length can be temporarily changed in the file core/src/main/scala/

com/nutomic/ensichat/core/Crypto.scala (variable PublicKeySize). Ad-
ditionally, the tests seem to fail randomly at some times. As a workaround, we
advise to run only one of the test functions in integration/src/main/scala/

com/nutomic/ensichat/integration/Main.scala at a time. These problems
seem to be caused by bugs in the test code itself, which could not be fixed yet.

26

Figure 8: Sequence diagram showing how a message is sent.

27

6 Security Considerations

Security is a very important aspect of any application that works with sensitive
data, such as private messages. In this section, we will give an overview over
possible attacks that could be used against Ensichat users and their data. Some
of them are problems in the current implementation, and can be completely
mitigated in a future version (like signing of header data and perfect forward
secrecy). Others are inherent problems of decentralized software, and the risk
can only be reduced to some degree (sybil attack).

6.1 Header Data is not Signed

At the moment, header fields in each message are not signed by the sender.
These fields contain various information like sender, receiver, sequence number,
and other fields. An attacker could send packages with a fake sender and/or
receiver address, or change header fields of an existing message. Fixing this
attack vector is relatively trivial, as message signing is already in place.

6.2 Perfect Forward Secrecy

Ensichat does currently not implement perfect forward secrecy. This means
an attacker can collect encrypted messages, and aquire the receiver’s private
key at a later time to decrypt all of them [10]. If perfect forward secrecry is
implemented, every message is encrypted with a separate public key. Because
of this, the compromise of a single message does not compromise any other
messages. It would be desirable to implement this as an additional measure to
protect user privacy.

6.3 Man in the Middle Attack

The metadata of messages is not encrypted, as it has to be read by intermediary
nodes. This means that any node which sees a message can see all of its metadata
(most importantly sender, receiver and time). This data could be analyzed and
correlated to build a profile of individual users. Note that an attacker could
only see a subset of all messages, assuming he does not control a majority of
the nodes. As a countermeasure, Ensichat could use onion routing, similar to
TOR [5]. Messages would be packed into a container message and sent to a

28

random node. The node would unpack the message, and forward it to the
actual destination node. A man in the middle would be unable to detect which
nodes communicate with each other.

As another attack vector, the attacker could give his own public key to users,
and forward messages between them. The users would think they are sending
messages directly to each other, but are instead sending them to the attacker.
This is why users are encouraged to compare their public keys in the Android
app.

6.4 Sybil Attack

As in any decentralized network, the possibility of a sybil attack exists [6].
For this, an attacker spawns many nodes, giving him a large influence on the
network. In Ensichat, the attacker could use these nodes to delay or inhibit
message delivery by not forwarding messages. He can also silently drop messages
that he should relay, breaking offline messaging. Or he could spam relays with
lots of messages, causing them to drop other messages. This threat is somewhat
reduced, because nodes always pick as relay the nodes with the longest overall
connection time, so the attacker needs to run his nodes for some time first.
Additionally, it may be possible to disrupt the route discovery of AODVv2. As
an additional countermeasure, there could be a proof of work required to start
a node, or an explicit reputation score for each node.

29

7 Conclusion

In this thesis, we took an existing decentralized instant messenger, and greatly
improved the efficiency and usability of its routing algorithm. We showed that
it is possible to design and implement a decentralized, delay-tolerant instant
messenger. This means that messages can be sent over the network with minimal
resource usage. Messages can also be delivered if the sender and destination node
are never online at the same time. All this functionality works without a central
server, and is completely trustless.

Existing protocols did not fit our requirements, so we designed and implemented
a custom routing protocol based on AODVv2 and Spray and Wait [3, 13]. Be-
cause we assume sparse messages, route discovery is only performed when a
message should be sent, saving resources. All messages are sent via relay nodes.
These relays buffer the message until the destination node is online, and then
deliver the message.

While we have already implemented the protocol together with some integration
tests, it is still a proof of concept, with much room for improvement. Before the
application can be considered stable, there have to be tests with actual users.
Such testing will show how practical the protocol is, and how well it scales. Of
particular interest is the retry interval, which determines when relays retry the
delivery of a message. The retry interval has to strike a balance between fast
message delivery and low network resource usage. Only practical testing with
many users can determine ideal values for this. Alternatively, an event-based
approach could be researched and implemented, as described in section 4.1.

Additional future work should be done to fix known security problems, and
detect any additional vulnerabilities which may exist. At the same time, more
features should be implemented, like sending media files, or supporting group
chats. These changes should be implemented carefully, to keep the protocol
efficient and avoid unnecessary resource usage.

The entire project is available under an open source license on Github [2]. Inter-
ested users can simply install the Android application from Google Play. There
is no setup required to use the app, besides simply adding the contacts.

30

8 References

[1] Matrix faq. Retrieved on 29. 06. 2016 from https://matrix.org/docs/

guides/faq.html.

[2] Felix Ableitner. Ensichat on github, 2014. Retrieved on 29. 06. 2016 from
https://github.com/Nutomic/ensichat.

[3] S. Ratliff C. Perkins, Futurewei. Ad hoc on-demand distance vector version
2 (aodvv2) routing, April 2016. Retrieved on 29. 06. 2016 from https:

//datatracker.ietf.org/doc/draft-ietf-manet-aodvv2/16/.

[4] Bram Cohen. The bittorrent protocol specification, 2008. Retrieved on 29.
06. 2016 from http://www.bittorrent.org/beps/bep_0003.html.

[5] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. Technical report, DTIC Document, 2004.

[6] John (JD) Douceur. The sybil attack. January 2002.

[7] Phil Haack. Identicons as graphical digital fingerprints, 2007. Re-
trieved on 29. 06. 2016 from http://haacked.com/archive/2007/01/22/

Identicons_as_Visual_Fingerprints.aspx/.

[8] Evan PC Jones, Lily Li, Jakub K Schmidtke, and Paul AS Ward. Practical
routing in delay-tolerant networks. IEEE Transactions on Mobile Comput-
ing, 6(8):943–959, 2007.

[9] Evan PC Jones and Paul AS Ward. Routing strategies for delay-tolerant
networks. Submitted to ACM Computer Communication Review (CCR),
2006.

[10] Hugo Krawczyk. Perfect forward secrecy. In Encyclopedia of Cryptography
and Security, pages 921–922. Springer, 2011.

[11] Shima Mohseni, Rosilah Hassan, Ahmed Patel, and Rozilawati Razali.
Comparative review study of reactive and proactive routing protocols in
manets. In 4th IEEE International Conference on Digital Ecosystems and
Technologies, pages 304–309. IEEE, 2010.

[12] Jian Shen, Sangman Moh, and Ilyong Chung. Routing protocols in de-
lay tolerant networks: A comparative survey. In The 23rd International

31

https://matrix.org/docs/guides/faq.html
https://matrix.org/docs/guides/faq.html
https://github.com/Nutomic/ensichat
https://datatracker.ietf.org/doc/draft-ietf-manet-aodvv2/16/
https://datatracker.ietf.org/doc/draft-ietf-manet-aodvv2/16/
http://www.bittorrent.org/beps/bep_0003.html
http://haacked.com/archive/2007/01/22/Identicons_as_Visual_Fingerprints.aspx/
http://haacked.com/archive/2007/01/22/Identicons_as_Visual_Fingerprints.aspx/

Technical Conference on Circuits/Systems, Computers and Communica-
tions (ITC-CSCC 2008), pages 6–9, 2008.

[13] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S Raghaven-
dra. Spray and wait: an efficient routing scheme for intermittently con-
nected mobile networks. In Proceedings of the 2005 ACM SIGCOMM work-
shop on Delay-tolerant networking, pages 252–259. ACM, 2005.

[14] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S Raghaven-
dra. Spray and focus: Efficient mobility-assisted routing for heterogeneous
and correlated mobility. In Pervasive Computing and Communications
Workshops, 2007. PerCom Workshops’ 07. Fifth Annual IEEE Interna-
tional Conference on, pages 79–85. IEEE, 2007.

[15] Thrasyvoulos Spyropoulos, Rao Naveed Bin Rais, Thierry Turletti, Katia
Obraczka, and Athanasios Vasilakos. Routing for disruption tolerant net-
works: taxonomy and design. Wireless networks, 16(8):2349–2370, 2010.

[16] Thrasyvoulos Spyropoulos, Thierry Turletti, and Katia Obraczka. Rout-
ing in delay-tolerant networks comprising heterogeneous node populations.
IEEE Transactions on Mobile Computing, 8(8):1132–1147, 2009.

32

	Introduction
	Related Work
	Other Messengers
	Decentralized Routing

	Ensichat Overview
	Network Topology
	Message Sending
	Core Library
	Server
	Android App

	Approach to Decentralized Routing
	Message Relays
	Routing

	Implementation
	Delay-Tolerant Routing
	Unit Tests
	Integration Tests

	Security Considerations
	Header Data is not Signed
	Perfect Forward Secrecy
	Man in the Middle Attack
	Sybil Attack

	Conclusion
	References

