242 lines
7.7 KiB
C++
242 lines
7.7 KiB
C++
/*
|
|
* Pathfinder.cpp
|
|
*
|
|
* Created on: 28.04.2013
|
|
* Author: Felix
|
|
*/
|
|
|
|
#include "Pathfinder.h"
|
|
|
|
#include <algorithm>
|
|
#include <unordered_set>
|
|
#include <unordered_map>
|
|
|
|
#include <Thor/Vectors.hpp>
|
|
|
|
#include "util/Interval.h"
|
|
#include "sprites/TileManager.h"
|
|
|
|
const float Pathfinder::WALL_DISTANCE_MULTIPLIER = 1.5f;
|
|
|
|
/**
|
|
* Runs the A* path finding algorithm with areas as nodes and portals as edges.
|
|
*
|
|
* @warning Areas and portals must not be changed while this is running.
|
|
*
|
|
* @param start The area to start the path finding from. Must not be null.
|
|
* @param end The goal to reach. Must not be null.
|
|
* @return Path in reverse order (start being the last item and end the first).
|
|
*/
|
|
std::vector<Pathfinder::Portal*>
|
|
Pathfinder::astarArea(Area* start, Area* end) const {
|
|
assert(start);
|
|
assert(end);
|
|
|
|
std::unordered_set<Area*> closed;
|
|
std::unordered_map<Area*, float> openAreasEstimatedCost;
|
|
// Navigated areas with previous area/portal.
|
|
std::unordered_map<Area*, std::pair<Area*, Portal*>> previousAreaAndPortal;
|
|
std::unordered_map<Area*, float> bestPathCost;
|
|
|
|
openAreasEstimatedCost[start] = heuristic_cost_estimate(start, end);
|
|
bestPathCost[start] = 0;
|
|
|
|
while (!openAreasEstimatedCost.empty()) {
|
|
Area* current = std::min_element(openAreasEstimatedCost.begin(),
|
|
openAreasEstimatedCost.end())->first;
|
|
if (current == end) {
|
|
std::vector<Portal*> path;
|
|
auto previous = current;
|
|
while (previous != start) {
|
|
path.push_back(previousAreaAndPortal[previous].second);
|
|
previous = previousAreaAndPortal[previous].first;
|
|
}
|
|
return path;
|
|
}
|
|
|
|
openAreasEstimatedCost.erase(current);
|
|
closed.insert(current);
|
|
for (Portal& portal : current->portals) {
|
|
Area* neighbor = portal.area;
|
|
float tentative_g_score = bestPathCost[current] +
|
|
heuristic_cost_estimate(current,neighbor);
|
|
if (closed.find(neighbor) != closed.end()) {
|
|
if (tentative_g_score >= bestPathCost[neighbor])
|
|
continue;
|
|
}
|
|
|
|
if ((openAreasEstimatedCost.find(neighbor) ==
|
|
openAreasEstimatedCost.end()) ||
|
|
(tentative_g_score < bestPathCost[neighbor])) {
|
|
previousAreaAndPortal[neighbor] = std::make_pair(current,
|
|
&portal);
|
|
bestPathCost[neighbor] = tentative_g_score;
|
|
openAreasEstimatedCost[neighbor] = bestPathCost[neighbor] +
|
|
heuristic_cost_estimate(neighbor, end);
|
|
}
|
|
}
|
|
}
|
|
return std::vector<Portal*>();
|
|
}
|
|
|
|
/**
|
|
* Returns path in reverse order.
|
|
*
|
|
* @warning Areas and portals must not be changed while this running.
|
|
*
|
|
* @param start Position to start the path from.
|
|
* @param end Position to move to.
|
|
* @param radius Radius of the moving object.
|
|
* @return Path from end to start (path from start to end in reverse order).
|
|
*/
|
|
std::vector<sf::Vector2f>
|
|
Pathfinder::getPath(const sf::Vector2f& start, const sf::Vector2f& end,
|
|
float radius) const {
|
|
if (!getArea(end))
|
|
return std::vector<sf::Vector2f>();
|
|
std::vector<Portal*> portals = astarArea(getArea(start), getArea(end));
|
|
if (portals.empty())
|
|
return std::vector<sf::Vector2f>();
|
|
std::vector<sf::Vector2f> path;
|
|
|
|
path.push_back(end);
|
|
for (auto p : portals) {
|
|
// Find the point on the line of the portal closest to the previous point.
|
|
sf::Vector2f startToEnd = sf::Vector2f(p->end - p->start);
|
|
float percentage = thor::dotProduct(startToEnd, path.back() - sf::Vector2f(p->start)) /
|
|
thor::squaredLength(startToEnd);
|
|
sf::Vector2f point;
|
|
|
|
if (percentage < 0 || percentage > 1.0f) {
|
|
if (thor::squaredLength(sf::Vector2f(p->start) - path.back()) <
|
|
thor::squaredLength(sf::Vector2f(p->end) - path.back())) {
|
|
thor::setLength(startToEnd, WALL_DISTANCE_MULTIPLIER * radius);
|
|
point = sf::Vector2f(p->start) + startToEnd;
|
|
}
|
|
else {
|
|
thor::setLength(startToEnd, WALL_DISTANCE_MULTIPLIER * radius);
|
|
point = sf::Vector2f(p->end) - startToEnd;
|
|
}
|
|
}
|
|
else
|
|
point = sf::Vector2f(p->start) + startToEnd * percentage;
|
|
|
|
// Take two points on a line orthogonal to the portal.
|
|
thor::setLength(startToEnd, radius);
|
|
startToEnd = thor::perpendicularVector(startToEnd);
|
|
path.push_back(point + startToEnd);
|
|
path.push_back(point - startToEnd);
|
|
// Make sure the points are in the right order.
|
|
if (thor::squaredLength(*(path.end() - 1) - *(path.end() - 3) ) <
|
|
thor::squaredLength(*(path.end() - 2) - *(path.end() - 3) ))
|
|
std::swap(*(path.end() - 1), *(path.end() - 2));
|
|
}
|
|
return path;
|
|
}
|
|
|
|
/**
|
|
* Returns the linear distance between two areas (using their center).
|
|
*/
|
|
float
|
|
Pathfinder::heuristic_cost_estimate(Area* start, Area* end) const {
|
|
return thor::length(sf::Vector2f(end->center - start->center));
|
|
}
|
|
|
|
bool Pathfinder::Portal::operator==(const Portal& p) {
|
|
return start == p.start && end == p.end && area == p.area;
|
|
}
|
|
|
|
/**
|
|
* Inserts an area used for path finding.
|
|
*
|
|
* @parm rect Rectangle the area covers.
|
|
*/
|
|
void
|
|
Pathfinder::insertArea(const sf::IntRect& rect) {
|
|
Area a;
|
|
// Not sure why the offset of -50 is required, but with it, areas align
|
|
// with tiles perfectly.
|
|
a.area = sf::IntRect(rect.left * TileManager::TILE_SIZE.x - 50,
|
|
rect.top * TileManager::TILE_SIZE.y - 50,
|
|
rect.width * TileManager::TILE_SIZE.x,
|
|
rect.height * TileManager::TILE_SIZE.y);
|
|
a.center = sf::Vector2i(a.area.left + a.area.width / 2,
|
|
a.area.top + a.area.height / 2);
|
|
mAreas.push_back(a);
|
|
}
|
|
|
|
/**
|
|
* Generates portals that connect areas. Needs to be run after insertArea for
|
|
* path finding to work.
|
|
*/
|
|
void
|
|
Pathfinder::generatePortals() {
|
|
for (Area& it : mAreas) {
|
|
// We currently recreate portals for all existing areas, so we have
|
|
// to clear in case this was already generated.
|
|
it.portals.clear();
|
|
for (Area& other : mAreas) {
|
|
if (&it == &other)
|
|
continue;
|
|
Portal portal;
|
|
portal.area = &other;
|
|
if (it.area.left + it.area.width == other.area.left) {
|
|
Interval overlap = Interval::IntervalFromPoints(it.area.top,
|
|
it.area.top + it.area.height)
|
|
.getOverlap(Interval::IntervalFromPoints(other.area.top,
|
|
other.area.top + other.area.height));
|
|
if (overlap.getLength() > 0) {
|
|
portal.start = sf::Vector2i(other.area.left, overlap.start);
|
|
portal.end = sf::Vector2i(other.area.left, overlap.end);
|
|
it.portals.push_back(portal);
|
|
}
|
|
}
|
|
if (other.area.left + other.area.width == it.area.left) {
|
|
Interval overlap = Interval::IntervalFromPoints(it.area.top,
|
|
it.area.top + it.area.height)
|
|
.getOverlap(Interval::IntervalFromPoints(other.area.top,
|
|
other.area.top + other.area.height));
|
|
if (overlap.getLength() > 0) {
|
|
portal.start = sf::Vector2i(it.area.left, overlap.start);
|
|
portal.end = sf::Vector2i(it.area.left, overlap.end);
|
|
it.portals.push_back(portal);
|
|
}
|
|
}
|
|
else if (it.area.top + it.area.height == other.area.top) {
|
|
Interval overlap = Interval::IntervalFromPoints(it.area.left,
|
|
it.area.left + it.area.width)
|
|
.getOverlap(Interval::IntervalFromPoints(other.area.left,
|
|
other.area.left + other.area.width));
|
|
if (overlap.getLength() > 0) {
|
|
portal.start = sf::Vector2i(overlap.start, other.area.top);
|
|
portal.end = sf::Vector2i(overlap.end, other.area.top);
|
|
it.portals.push_back(portal);
|
|
}
|
|
}
|
|
else if (other.area.top + other.area.height == it.area.top) {
|
|
Interval overlap = Interval::IntervalFromPoints(it.area.left,
|
|
it.area.left + it.area.width)
|
|
.getOverlap(Interval::IntervalFromPoints(other.area.left,
|
|
other.area.left + other.area.width));
|
|
if (overlap.getLength() > 0) {
|
|
portal.start = sf::Vector2i(overlap.start, it.area.top);
|
|
portal.end = sf::Vector2i(overlap.end, it.area.top);
|
|
it.portals.push_back(portal);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the area where point is in.
|
|
*/
|
|
Pathfinder::Area*
|
|
Pathfinder::getArea(const sf::Vector2f& point) const {
|
|
for (auto& area : mAreas) {
|
|
if (sf::FloatRect(area.area).contains(point))
|
|
// Make the return value non-const for convenience.
|
|
return &const_cast<Area&>(area);
|
|
}
|
|
return nullptr;
|
|
}
|