This repository has been archived on 2019-12-07. You can view files and clone it, but cannot push or open issues or pull requests.
dungeon-gunner/source/World.cpp
2013-04-05 16:58:37 +02:00

444 lines
15 KiB
C++
Executable file

/*
* World.cpp
*
* Created on: 29.08.2012
* Author: Felix
*/
#include "World.h"
#include <unordered_set>
#include <unordered_map>
#include <Thor/Vectors.hpp>
#include "util/Interval.h"
const float World::WALL_DISTANCE_MULTIPLIER = 1.5f;
/**
* Insert a drawable into the group. Drawables should only be handled with shared_ptr.
* An object can't be inserted more than once at the same level.
*/
void
World::insert(std::shared_ptr<Sprite> drawable) {
#ifndef NDEBUG
Sprite::Category cat = drawable->getCategory();
auto item = std::find(mDrawables[cat].begin(), mDrawables[cat].end(), drawable);
assert(item == mDrawables[cat].end());
#endif
mDrawables[drawable->getCategory()].push_back(drawable);
}
/**
* Removes a drawable from the group.
*/
void
World::remove(std::shared_ptr<Sprite> drawable) {
for (auto v = mDrawables.begin(); v != mDrawables.end(); v++) {
auto item = std::find(v->second.begin(), v->second.end(), drawable);
if (item != v->second.end()) {
v->second.erase(item);
break;
}
}
}
/**
* Inserts a character into the world. A character can only be inserted once.
* Also calls insert(character);
*/
void
World::insertCharacter(std::shared_ptr<Character> character) {
#ifndef NDEBUG
auto item = std::find(mCharacters.begin(), mCharacters.end(), character);
assert(item == mCharacters.end());
#endif
mCharacters.push_back(character);
insert(character);
}
/**
* Removes a character from the world.
* Also calls remove(character);
*/
void
World::removeCharacter(std::shared_ptr<Character> character) {
auto item = std::find(mCharacters.begin(), mCharacters.end(), character);
if (item != mCharacters.end())
mCharacters.erase(item);
remove(character);
}
/**
* Generate path finding base data.
*
* Hardcoded as heuristic may be unnecessary with proper map generation.
*
* @warning Must not be run while getPath() is running (raw pointers).
*/
void
World::generateAreas() {
Area a;
a.area = sf::FloatRect(50, 50, 900, 300);
a.center = sf::Vector2f(500, 200);
mAreas.push_back(a);
a.area = sf::FloatRect(450, 350, 450, 100);
a.center = sf::Vector2f(675, 400);
mAreas.push_back(a);
a.area = sf::FloatRect(50, 450, 900, 500);
a.center = sf::Vector2f(500, 700);
mAreas.push_back(a);
Portal p1;
Portal p2;
std::vector<Portal> vp;
p1.start = sf::Vector2f(450, 350);
p1.end = sf::Vector2f(950, 350);
p1.area = &mAreas[1];
vp.push_back(p1);
mAreas[0].portals = vp;
vp.clear();
p2.start = sf::Vector2f(450, 450);
p2.end = sf::Vector2f(950, 450);
p2.area = &mAreas[1];
vp.push_back(p2);
mAreas[2].portals = vp;
vp.clear();
p1.area = &mAreas[0];
vp.push_back(p1);
p2.area = &mAreas[2];
vp.push_back(p2);
mAreas[1].portals = vp;
}
/**
* Runs the A* path finding algorithm with areas as nodes and portals as edges.
*
* @warning Areas and portals must not be changed while this is running.
*
* @param start The area to start the path finding from. Must not be null.
* @param end The goal to reach. May be null.
* @return Path in reverse order (start being the last item and end the first).
*/
std::vector<World::Portal*>
World::astarArea(Area* start, Area* end) const {
assert(start);
if (!end)
return std::vector<World::Portal*>();
std::unordered_set<Area*> closed;
std::unordered_map<Area*, float> openAreasEstimatedCost;
// Navigated areas with previous area/portal.
std::unordered_map<Area*, std::pair<Area*, Portal*>> previousAreaAndPortal;
std::unordered_map<Area*, float> bestPathCost;
openAreasEstimatedCost[start] = heuristic_cost_estimate(start, end);
bestPathCost[start] = 0;
while (!openAreasEstimatedCost.empty()) {
Area* current = std::min_element(openAreasEstimatedCost.begin(),
openAreasEstimatedCost.end())->first;
if (current == end) {
std::vector<Portal*> path;
auto previous = current;
while (previous != start) {
path.push_back(previousAreaAndPortal[previous].second);
previous = previousAreaAndPortal[previous].first;
}
return path;
}
openAreasEstimatedCost.erase(current);
closed.insert(current);
for (Portal& portal : current->portals) {
Area* neighbor = portal.area;
float tentative_g_score = bestPathCost[current] +
heuristic_cost_estimate(current,neighbor);
if (closed.find(neighbor) != closed.end()) {
if (tentative_g_score >= bestPathCost[neighbor])
continue;
}
if ((openAreasEstimatedCost.find(neighbor) ==
openAreasEstimatedCost.end()) ||
(tentative_g_score < bestPathCost[neighbor])) {
previousAreaAndPortal[neighbor] = std::make_pair(current,
&portal);
bestPathCost[neighbor] = tentative_g_score;
openAreasEstimatedCost[neighbor] = bestPathCost[neighbor] +
heuristic_cost_estimate(neighbor, end);
}
}
}
return std::vector<Portal*>();
}
/**
* Returns path in reverse order.
*
* @warning Areas and portals must not be changed while this running.
*
* @param start Position to start the path from.
* @param end Position to move to.
* @param radius Radius of the moving object.
* @return Path from end to start (path from start to end in reverse order).
*/
std::vector<sf::Vector2f>
World::getPath(const sf::Vector2f& start, const sf::Vector2f& end,
float radius) const {
std::vector<Portal*> portals = astarArea(getArea(start), getArea(end));
std::vector<sf::Vector2f> path;
path.push_back(end);
for (auto p : portals) {
// Find the point on the line of the portal closest to the previous point.
sf::Vector2f startToEnd = p->end - p->start;
float percentage = thor::dotProduct(startToEnd, path.back() - p->start) /
thor::squaredLength(startToEnd);
sf::Vector2f point;
if (percentage < 0 || percentage > 1.0f) {
if (thor::squaredLength(p->start - path.back()) <
thor::squaredLength(p->end - path.back())) {
thor::setLength(startToEnd, WALL_DISTANCE_MULTIPLIER * radius);
point = p->start + startToEnd;
}
else {
thor::setLength(startToEnd, WALL_DISTANCE_MULTIPLIER * radius);
point = p->end - startToEnd;
}
}
else
point = p->start + startToEnd * percentage;
// Take two points on a line orthogonal to the portal.
thor::setLength(startToEnd, radius);
startToEnd = thor::perpendicularVector(startToEnd);
path.push_back(point + startToEnd);
path.push_back(point - startToEnd);
// Make sure the points are in the right order.
if (thor::squaredLength(*(path.end() - 1) - *(path.end() - 3) ) <
thor::squaredLength(*(path.end() - 2) - *(path.end() - 3) ))
std::swap(*(path.end() - 1), *(path.end() - 2));
}
return path;
}
/**
* Returns all characters that are within maxDistance from position.
*/
std::vector<std::shared_ptr<Character> >
World::getCharacters(const sf::Vector2f& position, float maxDistance) const {
std::vector<std::shared_ptr<Character> > visible;
for (auto it : mCharacters) {
if (position == it->getPosition())
continue;
if (thor::squaredLength(position - it->getPosition()) <=
maxDistance * maxDistance)
visible.push_back(it);
}
return visible;
}
/**
* Returns the linear distance between two areas (using their center).
*/
float
World::heuristic_cost_estimate(Area* start, Area* end) const {
return thor::length(end->center - start->center);
}
/**
* Checks for collisions and applies movement, also removes sprites if
* Sprite::getDelete returns true.
*
* This method can be improved by only testing each pair of sprites once,
* and using the result for both. Applying movement should be done in
* testCollision, always applying the part that causes no collision.
*/
void
World::step(int elapsed) {
for (auto v = mDrawables.begin(); v != mDrawables.end(); v++) {
for (auto it = v->second.begin(); it != v->second.end(); ) {
auto spriteA = *it;
if (spriteA->getDelete())
remove(spriteA);
else {
sf::Vector2f speed = spriteA->getSpeed();
speed *= elapsed / 1000.0f;
bool overlap = false;
for (auto w = mDrawables.begin(); w != mDrawables.end(); w++) {
for (auto spriteB : w->second) {
if (spriteA == spriteB)
continue;
// Ignore anything that is filtered by masks.
if (!spriteA->collisionEnabled(spriteB->getCategory()) ||
!spriteB->collisionEnabled(spriteA->getCategory()))
continue;
if (testCollision(spriteA, spriteB, elapsed)) {
spriteA->onCollide(spriteB);
overlap = true;
}
}
}
if (!overlap)
spriteA->setPosition(spriteA->getPosition() + speed);
it++;
}
}
}
}
/**
* Calls Character::onThink for each character. Must be called
* before step (due to character removal).
*
* @param elapsed Time since last call.
*/
void
World::think(int elapsed) {
for (auto it = mCharacters.begin(); it != mCharacters.end(); ) {
if ((*it)->getDelete())
removeCharacter(*it);
else {
(*it)->onThink(elapsed);
it++;
}
}
}
/**
* Tests for collisions using Seperating Axis Theorem (SAT).
*
* http://www.metanetsoftware.com/technique/tutorialA.html
*
* @param spriteA, spriteB Pair of sprites which to test for collision/overlapping.
* @param elapsed Time elapsed in this step.
* @return True if both sprites will be overlapping after their current movement.
*/
bool
World::testCollision(std::shared_ptr<Sprite> spriteA,
std::shared_ptr<Sprite> spriteB, int elapsed) const {
// circle-circle collision
if ((spriteA->mShape.type == Sprite::Shape::Type::CIRCLE) &&
(spriteB->mShape.type == Sprite::Shape::Type::CIRCLE)) {
sf::Vector2f axis = spriteA->getPosition() - spriteB->getPosition();
// If both objects are at the exact same position, allow any movement for unstucking.
if (axis == sf::Vector2f())
return true;
axis = thor::unitVector(axis);
float centerA = thor::dotProduct(axis, spriteA->getPosition());
float radiusA = spriteA->getRadius();
float movementA = thor::dotProduct(axis, spriteA->getSpeed() * (elapsed / 1000.0f));
float centerB = thor::dotProduct(axis, spriteB->getPosition());
float radiusB = spriteB->getRadius();
float movementB = thor::dotProduct(axis, spriteB->getSpeed() * (elapsed / 1000.0f));
// Allow movement if sprites are moving apart.
return Interval::IntervalFromRadius(centerA, radiusA).getOverlap(
Interval::IntervalFromRadius(centerB, radiusB)).getLength() <
Interval::IntervalFromRadius(centerA + movementA, radiusA).getOverlap(
Interval::IntervalFromRadius(centerB + movementB, radiusB)).getLength();
}
// circle-rect collision
if (((spriteA->mShape.type == Sprite::Shape::Type::CIRCLE) &&
(spriteB->mShape.type == Sprite::Shape::Type::RECTANGLE)) ||
((spriteA->mShape.type == Sprite::Shape::Type::RECTANGLE) &&
(spriteB->mShape.type == Sprite::Shape::Type::CIRCLE))) {
std::shared_ptr<Sprite> circle = spriteA;
std::shared_ptr<Sprite> rect = spriteB;
if (circle->mShape.type != Sprite::Shape::Type::CIRCLE)
std::swap(circle, rect);
float radius = circle->getRadius();
sf::Vector2f halfsize = rect->getSize() / 2.0f;
sf::Vector2f circlePos = circle->getPosition();
sf::Vector2f rectPos = rect->getPosition();
// Only circle movement as rectangles don't move.
sf::Vector2f circleMovement = circle->getSpeed() * (elapsed / 1000.0f);
// We assume that rectangles are always axis aligned.
float overlapNoMovementX = Interval::IntervalFromRadius(circlePos.x, radius)
.getOverlap(Interval::IntervalFromRadius(rectPos.x, halfsize.x)).getLength();
float overlapMovementX = Interval::IntervalFromRadius(circlePos.x + circleMovement.x, radius)
.getOverlap(Interval::IntervalFromRadius(rectPos.x, halfsize.x)).getLength();
float overlapNoMovementY = Interval::IntervalFromRadius(circlePos.y, radius)
.getOverlap(Interval::IntervalFromRadius(rectPos.y, halfsize.y)).getLength();
float overlapMovementY = Interval::IntervalFromRadius(circlePos.y + circleMovement.y, radius)
.getOverlap(Interval::IntervalFromRadius(rectPos.y, halfsize.y)).getLength();
bool xyCollisionResult = (((overlapNoMovementX < overlapMovementX) &&
(overlapNoMovementY > 0)) ||
((overlapNoMovementY < overlapMovementY) && (overlapNoMovementX > 0)));
// If circle center is overlapping rectangle on x or y axis, we can take xyCollisionResult.
if (Interval::IntervalFromRadius(rectPos.x, halfsize.x).isInside(circlePos.x) ||
Interval::IntervalFromRadius(rectPos.y, halfsize.y).isInside(circlePos.y))
return xyCollisionResult;
// Test if the circle is colliding with a corner of the rectangle.
else if (xyCollisionResult) {
// This is the same as circle-circle collision.
sf::Vector2f axis = circle->getPosition() - rect->getPosition();
// If both objects are at the exact same position, allow any
// movement for unstucking.
if (axis == sf::Vector2f())
return true;
axis = thor::unitVector(axis);
float circlePosProjected = thor::dotProduct(axis, circlePos);
float movementProjected = thor::dotProduct(axis, circleMovement);
float rectPosProjected = thor::dotProduct(axis, rectPos);
// For corner projections, those on the same line with the rect
// center are equal by value, so we only need one on each axis
// and take the maximum.
float rectHalfWidthProjected = std::max(
abs(thor::dotProduct(axis, halfsize)),
abs(thor::dotProduct(axis,
sf::Vector2f(halfsize.x, -halfsize.y))));
// Allow movement if sprites are moving apart.
return Interval::IntervalFromRadius(circlePosProjected, radius)
.getOverlap(Interval::IntervalFromRadius(rectPosProjected,
rectHalfWidthProjected))
.getLength() <
Interval::IntervalFromRadius(circlePosProjected + movementProjected, radius)
.getOverlap(Interval::IntervalFromRadius(rectPosProjected,
rectHalfWidthProjected))
.getLength();
}
// If there is no collision on x and y axis, there can't be one at all.
else {
return false;
}
}
// Rectangles can't move and thus not collide.
return false;
}
/**
* Returns the area where point is in.
* Just iterates through all areas and tests each.
*/
World::Area*
World::getArea(const sf::Vector2f& point) const {
for (auto area = mAreas.begin(); area != mAreas.end(); area++) {
if (area->area.contains(point))
// Make the return value non-const for convenience.
return &const_cast<Area&>(*area);
}
return nullptr;
}
/**
* Draws all elements in the group.
*/
void
World::draw(sf::RenderTarget& target, sf::RenderStates states) const {
for (auto v = mDrawables.begin(); v != mDrawables.end(); v++) {
for (auto item : v->second) {
target.draw(static_cast<sf::Drawable&>(*item), states);
}
}
}