/* * Pathfinder.cpp * * Created on: 28.04.2013 * Author: Felix */ #include "Pathfinder.h" #include #include #include #include #include "util/Interval.h" #include "sprites/Tile.h" const float Pathfinder::WALL_DISTANCE_MULTIPLIER = 1.5f; /** * Runs the A* path finding algorithm with areas as nodes and portals as edges. * * @warning Areas and portals must not be changed while this is running. * * @param start The area to start the path finding from. Must not be null. * @param end The goal to reach. Must not be null. * @return Path in reverse order (start being the last item and end the first). */ std::vector Pathfinder::astarArea(Area* start, Area* end) const { assert(start); assert(end); std::unordered_set closed; std::unordered_map openAreasEstimatedCost; // Navigated areas with previous area/portal. std::unordered_map> previousAreaAndPortal; std::unordered_map bestPathCost; openAreasEstimatedCost[start] = heuristic_cost_estimate(start, end); bestPathCost[start] = 0; while (!openAreasEstimatedCost.empty()) { Area* current = std::min_element(openAreasEstimatedCost.begin(), openAreasEstimatedCost.end())->first; if (current == end) { std::vector path; auto previous = current; while (previous != start) { path.push_back(previousAreaAndPortal[previous].second); previous = previousAreaAndPortal[previous].first; } return path; } openAreasEstimatedCost.erase(current); closed.insert(current); for (Portal& portal : current->portals) { Area* neighbor = portal.area; float tentative_g_score = bestPathCost[current] + heuristic_cost_estimate(current,neighbor); if (closed.find(neighbor) != closed.end()) { if (tentative_g_score >= bestPathCost[neighbor]) continue; } if ((openAreasEstimatedCost.find(neighbor) == openAreasEstimatedCost.end()) || (tentative_g_score < bestPathCost[neighbor])) { previousAreaAndPortal[neighbor] = std::make_pair(current, &portal); bestPathCost[neighbor] = tentative_g_score; openAreasEstimatedCost[neighbor] = bestPathCost[neighbor] + heuristic_cost_estimate(neighbor, end); } } } return std::vector(); } /** * Returns path in reverse order. * * @warning Areas and portals must not be changed while this running. * * @param start Position to start the path from. * @param end Position to move to. * @param radius Radius of the moving object. * @return Path from end to start (path from start to end in reverse order). */ std::vector Pathfinder::getPath(const sf::Vector2f& start, const sf::Vector2f& end, float radius) const { if (!getArea(end)) return std::vector(); std::vector portals = astarArea(getArea(start), getArea(end)); if (portals.empty()) return std::vector(); std::vector path; path.push_back(end); for (auto p : portals) { // Find the point on the line of the portal closest to the previous point. sf::Vector2f startToEnd = sf::Vector2f(p->end - p->start); float percentage = thor::dotProduct(startToEnd, path.back() - sf::Vector2f(p->start)) / thor::squaredLength(startToEnd); sf::Vector2f point; if (percentage < 0 || percentage > 1.0f) { if (thor::squaredLength(sf::Vector2f(p->start) - path.back()) < thor::squaredLength(sf::Vector2f(p->end) - path.back())) { thor::setLength(startToEnd, WALL_DISTANCE_MULTIPLIER * radius); point = sf::Vector2f(p->start) + startToEnd; } else { thor::setLength(startToEnd, WALL_DISTANCE_MULTIPLIER * radius); point = sf::Vector2f(p->end) - startToEnd; } } else point = sf::Vector2f(p->start) + startToEnd * percentage; // Take two points on a line orthogonal to the portal. thor::setLength(startToEnd, radius); startToEnd = thor::perpendicularVector(startToEnd); path.push_back(point + startToEnd); path.push_back(point - startToEnd); // Make sure the points are in the right order. if (thor::squaredLength(*(path.end() - 1) - *(path.end() - 3) ) < thor::squaredLength(*(path.end() - 2) - *(path.end() - 3) )) std::swap(*(path.end() - 1), *(path.end() - 2)); } return path; } /** * Returns the linear distance between two areas (using their center). */ float Pathfinder::heuristic_cost_estimate(Area* start, Area* end) const { return thor::length(sf::Vector2f(end->center - start->center)); } bool Pathfinder::Portal::operator==(const Portal& p) { return start == p.start && end == p.end && area == p.area; } /** * Inserts an area used for path finding. * * @parm rect Rectangle the area covers. */ void Pathfinder::insertArea(const sf::IntRect& rect) { Area a; // Not sure why the offset of -50 is required, but with it, areas align // with tiles perfectly. a.area = sf::IntRect(rect.left * Tile::TILE_SIZE.x - 50, rect.top * Tile::TILE_SIZE.y - 50, rect.width * Tile::TILE_SIZE.x, rect.height * Tile::TILE_SIZE.y); a.center = sf::Vector2i(a.area.left + a.area.width / 2, a.area.top + a.area.height / 2); mAreas.push_back(a); } /** * Generates portals that connect areas. Needs to be run after insertArea for * path finding to work. */ void Pathfinder::generatePortals() { for (Area& it : mAreas) { // We currently recreate portals for all existing areas, so we have // to clear in case this was already generated. it.portals.clear(); for (Area& other : mAreas) { if (&it == &other) continue; Portal portal; portal.area = &other; if (it.area.left + it.area.width == other.area.left) { Interval overlap = Interval::IntervalFromPoints(it.area.top, it.area.top + it.area.height) .getOverlap(Interval::IntervalFromPoints(other.area.top, other.area.top + other.area.height)); if (overlap.getLength() > 0) { portal.start = sf::Vector2i(other.area.left, overlap.start); portal.end = sf::Vector2i(other.area.left, overlap.end); it.portals.push_back(portal); } } if (other.area.left + other.area.width == it.area.left) { Interval overlap = Interval::IntervalFromPoints(it.area.top, it.area.top + it.area.height) .getOverlap(Interval::IntervalFromPoints(other.area.top, other.area.top + other.area.height)); if (overlap.getLength() > 0) { portal.start = sf::Vector2i(it.area.left, overlap.start); portal.end = sf::Vector2i(it.area.left, overlap.end); it.portals.push_back(portal); } } else if (it.area.top + it.area.height == other.area.top) { Interval overlap = Interval::IntervalFromPoints(it.area.left, it.area.left + it.area.width) .getOverlap(Interval::IntervalFromPoints(other.area.left, other.area.left + other.area.width)); if (overlap.getLength() > 0) { portal.start = sf::Vector2i(overlap.start, other.area.top); portal.end = sf::Vector2i(overlap.end, other.area.top); it.portals.push_back(portal); } } else if (other.area.top + other.area.height == it.area.top) { Interval overlap = Interval::IntervalFromPoints(it.area.left, it.area.left + it.area.width) .getOverlap(Interval::IntervalFromPoints(other.area.left, other.area.left + other.area.width)); if (overlap.getLength() > 0) { portal.start = sf::Vector2i(overlap.start, it.area.top); portal.end = sf::Vector2i(overlap.end, it.area.top); it.portals.push_back(portal); } } } } } /** * Returns the area where point is in. */ Pathfinder::Area* Pathfinder::getArea(const sf::Vector2f& point) const { for (auto& area : mAreas) { if (sf::FloatRect(area.area).contains(point)) // Make the return value non-const for convenience. return &const_cast(area); } return nullptr; }