/* * SimplexNoise.cpp * * Created on: 14.06.2013 * Author: Felix */ #include "SimplexNoise.h" #include #include /** * Initializes permutation with random values. */ SimplexNoise::SimplexNoise() { std::mt19937 mersenne(time(nullptr)); std::uniform_int_distribution distribution(0, 255); for (int i = 0; i < 512; i++) mPerm[i] = distribution(mersenne); } /** * Returns a noise value from cache, or generates if it was requested for * the first time. * * @return Value within [-1, 1] */ float SimplexNoise::getNoise(int x, int y) { if (mCache.count(x) == 0 || mCache.at(x).count(y) == 0) mCache[x][y] = noise(x, y); return mCache.at(x).at(y); } /** * Floor implementation that is faster than std implementation by * ignoring some checks and does not consider some border conditions. */ int SimplexNoise::fastFloor(float f) const { return (f>0) ? f : ((int) f) - 1; } /** * Helper function for noise generation. */ float SimplexNoise::grad(int hash, float x, float y) const { int h = hash & 7; // Convert low 3 bits of hash code float u = h<4 ? x : y; // into 8 simple gradient directions, float v = h<4 ? y : x; // and compute the dot product with (x,y). return ((h&1)? -u : u) + ((h&2)? -2.0f*v : 2.0f*v); } /** * Generates actual noise. */ float SimplexNoise::noise(float x, float y) const { #define F2 0.366025403 // F2 = 0.5*(sqrt(3.0)-1.0) #define G2 0.211324865 // G2 = (3.0-Math.sqrt(3.0))/6.0 float n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in float s = (x+y)*F2; // Hairy factor for 2D float xs = x + s; float ys = y + s; int i = fastFloor(xs); int j = fastFloor(ys); float t = (float)(i+j)*G2; float X0 = i-t; // Unskew the cell origin back to (x,y) space float Y0 = j-t; float x0 = x-X0; // The x,y distances from the cell origin float y0 = y-Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1) else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords float y1 = y0 - j1 + G2; float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords float y2 = y0 - 1.0f + 2.0f * G2; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i & 0xff; int jj = j & 0xff; // Calculate the contribution from the three corners float t0 = 0.5f - x0*x0-y0*y0; if(t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad(mPerm[ii+mPerm[jj]], x0, y0); } float t1 = 0.5f - x1*x1-y1*y1; if(t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad(mPerm[ii+i1+mPerm[jj+j1]], x1, y1); } float t2 = 0.5f - x2*x2-y2*y2; if(t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad(mPerm[ii+1+mPerm[jj+1]], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 40.0f * (n0 + n1 + n2); }