/* * Generator.cpp * * Created on: 07.04.2013 * Author: Felix */ #include "Generator.h" #include #include #include #include #include #include #include "../Pathfinder.h" #include "../World.h" #include "../sprites/Enemy.h" const int Generator::GENERATE_AREA_SIZE = 4; const float Generator::GENERATE_AREA_RANGE = 4.0f; /** * Generates new random seed. */ Generator::Generator(World& world, Pathfinder& pathfinder) : mWorld(world), mPathfinder(pathfinder) { } /** * Generates tiles near player position (maximum distance is determined by * GENERATE_AREA_SIZE and GENERATE_AREA_RANGE). */ void Generator::generateCurrentAreaIfNeeded(const sf::Vector2f& playerPosition) { auto compare = [](const sf::Vector2i& a, const sf::Vector2i& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }; std::map open(compare); std::set closed(compare); sf::Vector2i start((int) floor(playerPosition.x / Tile::TILE_SIZE.x), (int) floor(playerPosition.y / Tile::TILE_SIZE.y)); start /= GENERATE_AREA_SIZE; auto makePair = [&start](const sf::Vector2i& point) { return std::make_pair(point, thor::length(sf::Vector2f(point - start))); }; open.insert(makePair(start)); while (!open.empty()) { auto intComp = [](const std::pair& left, const std::pair& right) { return left.second < right.second; }; sf::Vector2i current = std::min_element(open.begin(), open.end(), intComp)->first; float distance = open[current]; open.erase(current); closed.insert(current); if (!mGenerated[current.x][current.y] && distance <= GENERATE_AREA_RANGE) { mGenerated[current.x][current.y] = true; sf::IntRect area(current * GENERATE_AREA_SIZE - sf::Vector2i(GENERATE_AREA_SIZE, GENERATE_AREA_SIZE) / 2, sf::Vector2i(GENERATE_AREA_SIZE, GENERATE_AREA_SIZE)); generateTiles(area); for (const auto& enemyPosition : getEnemySpawns(area)) { float distance = thor::length(enemyPosition - playerPosition); if (distance > Character::VISION_DISTANCE) { mWorld.insertCharacter(std::shared_ptr(new Enemy(mWorld, mPathfinder, enemyPosition))); } } } if (mGenerated[current.x][current.y] && distance <= GENERATE_AREA_RANGE) { if (closed.find(sf::Vector2i(current.x + 1, current.y)) == closed.end()) open.insert(makePair(sf::Vector2i(current.x + 1, current.y))); if (closed.find(sf::Vector2i(current.x, current.y + 1)) == closed.end()) open.insert(makePair(sf::Vector2i(current.x, current.y + 1))); if (closed.find(sf::Vector2i(current.x - 1, current.y)) == closed.end()) open.insert(makePair(sf::Vector2i(current.x - 1, current.y))); if (closed.find(sf::Vector2i(current.x, current.y - 1)) == closed.end()) open.insert(makePair(sf::Vector2i(current.x, current.y - 1))); } } } /** * Fill world with procedurally generated tiles. * * @param area Size and position of area to generate tiles for. Width and * height must each be a power of two. */ void Generator::generateTiles(const sf::IntRect& area) { // Check if width and height are power of two. assert(area.width && !(area.width & (area.width - 1))); assert(area.height && !(area.height & (area.height - 1))); array generatedTiles; fill(generatedTiles, area, type::FLOOR); for (int x = area.left; x < area.left + area.width; x++) { for (int y = area.top; y < area.top + area.height; y++) { filterWalls(generatedTiles, x, y, 2, 1, 0); filterWalls(generatedTiles, x, y, 6, 1, 2); filterWalls(generatedTiles, x, y, 10, 1, 4); } } for (int x = area.left; x < area.left + area.width; x++) for (int y = area.top; y < area.top + area.height; y++) { // Merge map that we just generated with stored map. mTiles[x][y] = generatedTiles[x][y]; // Actually generate physical tiles. mWorld.insert(std::shared_ptr( new Tile(generatedTiles.at(x).at(y), x, y))); } generateAreas(area); mPathfinder.generatePortals(); } /** * Returns coordinates where enemies should spawn. */ std::vector Generator::getEnemySpawns(const sf::IntRect& area) { auto compare = [](const sf::Vector2f& a, const sf::Vector2f& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }; std::set ret(compare); for (int x = area.left; x < area.left + area.width; x++) { for (int y = area.top; y < area.top + area.height; y++) { if (mCharacterNoise.getNoise(x, y) < -0.85f) { sf::Vector2i tilePosition = findClosestFloor(sf::Vector2i(x, y)); ret.insert(sf::Vector2f(tilePosition.x * Tile::TILE_SIZE.x, tilePosition.y * Tile::TILE_SIZE.y)); } } } return std::vector(ret.begin(), ret.end()); } /** * Fills a rectangular area with the specified value. * * @param[in,out] Array to set values to. * @param area The area to fill. * @param value The value to set. */ void Generator::fill(array& tiles, const sf::IntRect& area, Tile::Type value) { for (int x = area.left; x < area.left + area.width; x++) { for (int y = area.top; y < area.top + area.height; y++) tiles[x][y] = value; } } /** * Counts and returns the number of walls within the area. * * @param area The area to count in. */ int Generator::countWalls(const sf::IntRect& area) { int count = 0; for (int x = area.left; x < area.left + area.width; x++) { for (int y = area.top; y < area.top + area.height; y++) count += (int) (getTileType(mTileNoise.getNoise(x, y)) == type::WALL); } return count; } /** * Finds rectangles of specific size with mTileNoise and * puts them into vector out. * * @param[in,out] tiles Tiles to be placed. Does not explicitly set floor values * (keeps previous values). * @param x Position to check from (top left corner for rectangle). * @param y Position to check from (top left corner for rectangle). * @param longside Length of the longer side of the rectangle. * @param shortside Length of the shorter side of the rectangle. * @param subtract Still accepts rectangle if at least this amount of * tiles is not walls (tilecount >= longside * shortside - subtract). */ void Generator::filterWalls(array& tiles, int x, int y, int longside, int shortside, int subtract) { // Filter in horizontal direction. if (countWalls(sf::IntRect(x, y, longside, shortside)) >= shortside * longside - subtract) fill(tiles, sf::IntRect(x, y, longside, shortside), type::WALL); // Filter in vertical direction. if (countWalls(sf::IntRect(x, y, shortside, longside)) >= shortside * longside - subtract) fill(tiles, sf::IntRect(x, y, shortside, longside), type::WALL); } /** * Inserts floor tiles into path finder, using a quadtree approach to group * tiles where possible. * * @param area The area to generate areas for. */ void Generator::generateAreas(const sf::IntRect& area) { assert(area.width > 0 && area.height > 0); int wallCount = 0; for (int x = area.left; x < area.left + area.width; x++) for (int y = area.top; y < area.top + area.height; y++) wallCount += (int) (mTiles[x][y] == type::WALL); if (wallCount == 0) mPathfinder.insertArea(sf::FloatRect(area.left, area.top, area.width, area.height)); else if (wallCount == area.width * area.height) return; else { int halfWidth = area.width / 2; int halfHeight = area.height / 2; generateAreas(sf::IntRect(area.left, area.top, halfWidth, halfHeight)); generateAreas(sf::IntRect(area.left + halfWidth, area.top, halfWidth, halfHeight)); generateAreas(sf::IntRect(area.left, area.top + halfHeight, halfWidth, halfHeight)); generateAreas(sf::IntRect(area.left + halfWidth, area.top + halfHeight, halfWidth, halfHeight)); } } /** * Defines if a perlin noise result value is converted to a wall or floor tile. * * @param value Perlin noise value within [-1, 1] */ Generator::type Generator::getTileType(float value) { return (value < -0.2f) ? type::WALL : type::FLOOR; } /** * Returns a valid position (floor) for the player to spawn at. */ sf::Vector2f Generator::getPlayerSpawn() const { sf::Vector2i spawn = findClosestFloor(sf::Vector2i(0, 0)); return sf::Vector2f(spawn.x * Tile::TILE_SIZE.x, spawn.y * Tile::TILE_SIZE.y); } /** * Finds the point array index closest to position which has a floor tile. * * @position Point to start search for a floor tile from. */ sf::Vector2i Generator::findClosestFloor(const sf::Vector2i& position) const { auto compare = [](const sf::Vector2i& a, const sf::Vector2i& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }; std::map open(compare); std::set closed(compare); sf::Vector2i start = position; auto makePair = [&start](const sf::Vector2i& point) { return std::make_pair(point, thor::length(sf::Vector2f(point - start))); }; open.insert(makePair(start)); while (!open.empty()) { auto intComp = [](const std::pair& left, const std::pair& right) { return left.second < right.second; }; sf::Vector2i current = std::min_element(open.begin(), open.end(), intComp)->first; open.erase(current); closed.insert(current); if (mTiles.count(current.x) != 0 && mTiles.at(current.x).count(current.y) != 0 && mTiles.at(current.x).at(current.y) == type::FLOOR) { return current; } else { if (closed.find(sf::Vector2i(current.x + 1, current.y)) == closed.end()) open.insert(makePair(sf::Vector2i(current.x + 1, current.y))); if (closed.find(sf::Vector2i(current.x, current.y + 1)) == closed.end()) open.insert(makePair(sf::Vector2i(current.x, current.y + 1))); if (closed.find(sf::Vector2i(current.x - 1, current.y)) == closed.end()) open.insert(makePair(sf::Vector2i(current.x - 1, current.y))); if (closed.find(sf::Vector2i(current.x, current.y - 1)) == closed.end()) open.insert(makePair(sf::Vector2i(current.x, current.y - 1))); } } assert(false); return sf::Vector2i(); }