/* * World.cpp * * Created on: 29.08.2012 * Author: Felix */ #include "World.h" #include #include #include /** * Insert a drawable into the group. Drawables should only be handled with shared_ptr. * An object can't be inserted more than once at the same level. */ void World::insert(std::shared_ptr drawable) { #ifndef NDEBUG Sprite::Category cat = drawable->getCategory(); auto item = std::find(mDrawables[cat].begin(), mDrawables[cat].end(), drawable); assert(item == mDrawables[cat].end()); #endif mDrawables[drawable->getCategory()].push_back(drawable); } /** * Removes a drawable from the group. */ void World::remove(std::shared_ptr drawable) { for (auto v = mDrawables.begin(); v != mDrawables.end(); v++) { auto item = std::find(v->second.begin(), v->second.end(), drawable); if (item != v->second.end()) { v->second.erase(item); } } } /** * Inserts a character into the world. A character can only be inserted once. * Also calls insert(character); */ void World::insertCharacter(std::shared_ptr character) { #ifndef NDEBUG auto item = std::find(mCharacters.begin(), mCharacters.end(), character); assert(item == mCharacters.end()); #endif mCharacters.push_back(character); insert(character); } /** * Removes a character from the world. * Also calls remove(character); */ void World::removeCharacter(std::shared_ptr character) { auto item = std::find(mCharacters.begin(), mCharacters.end(), character); if (item != mCharacters.end()) { mCharacters.erase(item); } remove(character); } /** * Generate path finding base data. * * Hardcoded as heuristic may be unnecessary with proper map generation. * * @warning Must not be run while getPath() is running (raw pointers). */ void World::generateAreas() { Area a; a.area = sf::FloatRect(50, 50, 900, 300); a.center = sf::Vector2f(500, 200); mAreas.push_back(a); a.area = sf::FloatRect(450, 350, 450, 100); a.center = sf::Vector2f(675, 400); mAreas.push_back(a); a.area = sf::FloatRect(50, 450, 900, 500); a.center = sf::Vector2f(500, 700); mAreas.push_back(a); Portal p1; Portal p2; std::vector vp; p1.start = sf::Vector2f(450, 350); p1.end = sf::Vector2f(950, 350); p1.area = &mAreas[1]; vp.push_back(p1); mAreas[0].portals = vp; vp.clear(); p2.start = sf::Vector2f(450, 450); p2.end = sf::Vector2f(950, 450); p2.area = &mAreas[1]; vp.push_back(p2); mAreas[2].portals = vp; vp.clear(); p1.area = &mAreas[0]; vp.push_back(p1); p2.area = &mAreas[2]; vp.push_back(p2); mAreas[1].portals = vp; } /** * Runs the A* path finding algorithm with areas as nodes and portals as edges. * * @warning Areas and portals must not be changed while this is running. * * @param start The area to start the path finding from. Must not be null. * @param end The goal to reach. May be null. * @return Path in reverse order (start being the last item and end the first). */ std::vector World::astarArea(Area* start, Area* end) const { assert(start); if (!end) { return std::vector(); } std::unordered_set closedset; // The set of nodes already evaluated. // Set of nodes to be evaluated, with corresponding estimated cost start -> area -> goal std::unordered_map openset; // The map of navigated nodes, with previous, lowest cost Area/Portal. std::unordered_map> came_from; std::unordered_map g_score; // Cost from start along best known path. openset[start] = heuristic_cost_estimate(start, end); g_score[start] = 0; while (!openset.empty()) { // the node in openset having the lowest f_score value. Area* current = std::min_element(openset.begin(), openset.end())->first; if (current == end) { std::vector path; auto previous = current; while (previous != start) { path.push_back(came_from[previous].second); previous = came_from[previous].first; } return path; } openset.erase(current); closedset.insert(current); for (Portal& portal : current->portals) { Area* neighbor = portal.area; // Use edge weight instead of heuristic cost estimate? float tentative_g_score = g_score[current] + heuristic_cost_estimate(current,neighbor); if (closedset.find(neighbor) != closedset.end()) { if (tentative_g_score >= g_score[neighbor]) { continue; } } if ((openset.find(neighbor) == openset.end()) || (tentative_g_score < g_score[neighbor])) { came_from[neighbor] = std::make_pair(current, &portal); g_score[neighbor] = tentative_g_score; openset[neighbor] = g_score[neighbor] + heuristic_cost_estimate(neighbor, end); } } } return std::vector(); } /** * Returns path in reverse order. * * @warning Areas and portals must not be changed while this running. * * @param start Position to start the path from. * @param end Position to move to. * @param radius Radius of the moving object. * @return Path from end to start (path from start to end in reverse order). */ std::vector World::getPath(const sf::Vector2f& start, const sf::Vector2f& end, float radius) const { std::vector portals = astarArea(getArea(start), getArea(end)); std::vector path; path.push_back(end); for (auto p : portals) { // Find the point on the line of the portal closest to the previous point. sf::Vector2f startToEnd = p->end - p->start; float percentage = thor::dotProduct(startToEnd, path.back() - p->start) / thor::squaredLength(startToEnd); sf::Vector2f point; if (percentage < 0 || percentage > 1.0f) { if (thor::squaredLength(p->start - path.back()) < thor::squaredLength(p->end - path.back())) { thor::setLength(startToEnd, radius); point = p->start + startToEnd; } else { thor::setLength(startToEnd, radius); point = p->end - startToEnd; } } else { point = p->start + startToEnd * percentage; } // Take two points on a line orthogonal to the portal. thor::setLength(startToEnd, radius); startToEnd = thor::perpendicularVector(startToEnd); path.push_back(point + startToEnd); path.push_back(point - startToEnd); // Make sure the points are in the right order. if (thor::squaredLength(*(path.end() - 1) - *(path.end() - 3) ) < thor::squaredLength(*(path.end() - 2) - *(path.end() - 3) )) { std::swap(*(path.end() - 1), *(path.end() - 2)); } } return path; } /** * Returns all characters that are within maxDistance from position. */ std::vector > World::getCharacters(const sf::Vector2f& position, float maxDistance) const { std::vector > visible; for (auto it : mCharacters) { if (thor::squaredLength(position - it->getPosition()) <= maxDistance * maxDistance) { visible.push_back(it); } } return visible; } /** * Returns the linear distance between two areas (using their center). */ float World::heuristic_cost_estimate(Area* start, Area* end) const { return thor::length(end->center - start->center); } /** * Checks for collisions and applies movement, also removes sprites if * Sprite::getDelete returns true. * * This method can be improved by only testing each pair of sprites once, * and using the result for both. Applying movement should be done in * testCollision, always applying the part that causes no collision. */ void World::step(int elapsed) { for (auto v = mDrawables.begin(); v != mDrawables.end(); v++) { for (auto it = v->second.begin(); it != v->second.end(); ) { auto spriteA = *it; if (spriteA->getDelete()) { remove(spriteA); } else { sf::Vector2f speed = spriteA->getSpeed(); speed *= elapsed / 1000.0f; bool overlap = false; for (auto w = mDrawables.begin(); w != mDrawables.end(); w++) { for (auto spriteB : w->second) { if (spriteA == spriteB) { continue; } // Ignore anything that is filtered by masks. if (!spriteA->collisionEnabled(spriteB->getCategory()) || !spriteB->collisionEnabled(spriteA->getCategory())) { continue; } if (testCollision(spriteA, spriteB, elapsed)) { spriteA->onCollide(spriteB); overlap = true; } } } if (!overlap) { spriteA->setPosition(spriteA->getPosition() + speed); } it++; } } } } /** * Calls Character::onThink for each character. * * @param elapsed Time since last call. */ void World::think(int elapsed) { for (auto it : mCharacters) { it->onThink(elapsed); } } /** * Tests for collisions using Seperating Axis Theorem (SAT). * * http://www.metanetsoftware.com/technique/tutorialA.html * * @param spriteA, spriteB Pair of sprites which to test for collision/overlapping. * @param elapsed Time elapsed in this step. * @return True if both sprites will be overlapping after their current movement. */ bool World::testCollision(std::shared_ptr spriteA, std::shared_ptr spriteB, int elapsed) const { // circle-circle collision if ((spriteA->mShape.type == Sprite::Shape::Type::CIRCLE) && (spriteB->mShape.type == Sprite::Shape::Type::CIRCLE)) { sf::Vector2f axis = spriteA->getPosition() - spriteB->getPosition(); // If both objects are at the exact same position, allow any movement for unstucking. if (axis == sf::Vector2f()) { return true; } axis = thor::unitVector(axis); float centerA = thor::dotProduct(axis, spriteA->getPosition()); float radiusA = spriteA->getRadius(); float movementA = thor::dotProduct(axis, spriteA->getSpeed() * (elapsed / 1000.0f)); float centerB = thor::dotProduct(axis, spriteB->getPosition()); float radiusB = spriteB->getRadius(); float movementB = thor::dotProduct(axis, spriteB->getSpeed() * (elapsed / 1000.0f)); // Allow movement if sprites are moving apart. return Interval(centerA, radiusA).getOverlap(Interval(centerB, radiusB)).getLength() < Interval(centerA + movementA, radiusA).getOverlap( Interval(centerB + movementB, radiusB)).getLength(); } // circle-rect collision if (((spriteA->mShape.type == Sprite::Shape::Type::CIRCLE) && (spriteB->mShape.type == Sprite::Shape::Type::RECTANGLE)) || ((spriteA->mShape.type == Sprite::Shape::Type::RECTANGLE) && (spriteB->mShape.type == Sprite::Shape::Type::CIRCLE))) { std::shared_ptr circle = spriteA; std::shared_ptr rect = spriteB; if (circle->mShape.type != Sprite::Shape::Type::CIRCLE) { std::swap(circle, rect); } float radius = circle->getRadius(); sf::Vector2f halfsize = rect->getSize() / 2.0f; sf::Vector2f circlePos = circle->getPosition(); sf::Vector2f rectPos = rect->getPosition(); // Only circle movement as rectangles don't move. sf::Vector2f circleMovement = circle->getSpeed() * (elapsed / 1000.0f); // We assume that rectangles are always axis aligned. float overlapNoMovementX = Interval(circlePos.x, radius) .getOverlap(Interval (rectPos.x, halfsize.x)).getLength(); float overlapMovementX = Interval(circlePos.x + circleMovement.x, radius) .getOverlap(Interval (rectPos.x, halfsize.x)).getLength(); float overlapNoMovementY = Interval(circlePos.y, radius) .getOverlap(Interval (rectPos.y, halfsize.y)).getLength(); float overlapMovementY = Interval(circlePos.y + circleMovement.y, radius) .getOverlap(Interval (rectPos.y, halfsize.y)).getLength(); bool xyCollisionResult = (((overlapNoMovementX < overlapMovementX) && (overlapNoMovementY > 0)) || ((overlapNoMovementY < overlapMovementY) && (overlapNoMovementX > 0))); // If circle center is overlapping rectangle on x or y axis, we can take xyCollisionResult. if (Interval(rectPos.x, halfsize.x).isInside(circlePos.x) || Interval(rectPos.y, halfsize.y).isInside(circlePos.y)) { return xyCollisionResult; } // Test if the circle is colliding with a corner of the rectangle. else if (xyCollisionResult) { // This is the same as circle-circle collision. sf::Vector2f axis = circle->getPosition() - rect->getPosition(); // If both objects are at the exact same position, allow any // movement for unstucking. if (axis == sf::Vector2f()) { return true; } axis = thor::unitVector(axis); float circlePosProjected = thor::dotProduct(axis, circlePos); float movementProjected = thor::dotProduct(axis, circleMovement); float rectPosProjected = thor::dotProduct(axis, rectPos); // For corner projections, those on the same line with the rect // center are equal by value, so we only need one on each axis // and take the maximum. float rectHalfWidthProjected = std::max( abs(thor::dotProduct(axis, halfsize)), abs(thor::dotProduct(axis, sf::Vector2f(halfsize.x, -halfsize.y)))); // Allow movement if sprites are moving apart. return Interval(circlePosProjected, radius) .getOverlap(Interval(rectPosProjected, rectHalfWidthProjected)) .getLength() < Interval(circlePosProjected + movementProjected, radius) .getOverlap(Interval(rectPosProjected, rectHalfWidthProjected)) .getLength(); } // If there is no collision on x and y axis, there can't be one at all. else { return false; } } // Rectangles can't move and thus not collide. return false; } /** * Returns the area where point is in. * Just iterates through all areas and tests each. */ World::Area* World::getArea(const sf::Vector2f& point) const { for (auto area = mAreas.begin(); area != mAreas.end(); area++) { if (area->area.contains(point)) { // Make the return value non-const for convenience. return &const_cast(*area); } } return nullptr; } /** * Draws all elements in the group. */ void World::draw(sf::RenderTarget& target, sf::RenderStates states) const { for (auto v = mDrawables.begin(); v != mDrawables.end(); v++) { for (auto item : v->second) { target.draw(static_cast(*item), states); } } } /** * Creates an interval from a center point and a radius. The interval * ranges from center - radius to center + radius. */ World::Interval::Interval(float center, float radius) : start(center - radius), end(center + radius) { } /** * Returns the overlap between two intervals, e.g. the overlap between * intervals (1,3) and (2,4) is (2,3). */ World::Interval World::Interval::getOverlap(Interval other) const { if ((start == other.start) && (end == other.end)) { return *this; } Interval smaller = *this; Interval bigger = other; if (smaller.start > bigger.start) { std::swap(smaller, bigger); } Interval iv(0, 0); if (bigger.start < smaller.end) { iv.start = bigger.start; iv.end = smaller.end; } else { iv.start = iv.end = 0.0f; } return iv; } /** * Returns true if the point is inside the interval. */ bool World::Interval::isInside(float point) const { return start < point && point < end; } /** * Returns the length of the interval (distance between start and end). */ float World::Interval::getLength() { return end - start; }