diff --git a/source/Game.cpp b/source/Game.cpp index 2a29632..6473e57 100644 --- a/source/Game.cpp +++ b/source/Game.cpp @@ -6,7 +6,8 @@ */ #include "Game.h" - + +#include "Generator.h" #include "sprites/Enemy.h" #include "sprites/Player.h" #include "util/Yaml.h" @@ -25,41 +26,13 @@ Game::Game(sf::RenderWindow& window) : mWindow.setFramerateLimit(FPS_GOAL); mWindow.setKeyRepeatEnabled(true); - generate(); -} - -/** - * Generates a predefined map. - */ -void -Game::generate() { - for (int x = 0; x < 11; x++) - mTileManager.insertTile(TileManager::TilePosition(x, 0), TileManager::Type::WALL); - for (int x = 0; x < 11; x++) - mTileManager.insertTile(TileManager::TilePosition(x, 10), TileManager::Type::WALL); - for (int y = 1; y < 10; y++) - mTileManager.insertTile(TileManager::TilePosition(0, y), TileManager::Type::WALL); - for (int y = 1; y < 10; y++) - mTileManager.insertTile(TileManager::TilePosition(10, y), TileManager::Type::WALL); - - for (int x = 1; x < 10; x++) - for (int y = 1; y < 10; y++) - mTileManager.insertTile(TileManager::TilePosition(x, y), TileManager::Type::FLOOR); - - for (int x = 1; x < 5; x++) { - mTileManager.removeTile(TileManager::TilePosition(x, 4)); - mTileManager.insertTile(TileManager::TilePosition(x, 4), TileManager::Type::WALL); - } - - mWorld.insertCharacter(std::shared_ptr(new Enemy(mWorld, mTileManager, - sf::Vector2f(200.0f, 600.0f), Yaml("enemy.yaml")))); - + Generator generator; + generator.generateTiles(mTileManager, sf::IntRect(-10, -10, 20, 20)); mPlayer = std::shared_ptr(new Player(mWorld, mTileManager, - sf::Vector2f(200.0f, 100.0f), Yaml("player.yaml"))); - mWorld.insertCharacter(mPlayer); - - mWorld.generateAreas(); + sf::Vector2f(0.0f, 0.0f), Yaml("player.yaml"))); + mWorld.insertCharacter(mPlayer); } + /** * Closes window. */ @@ -73,7 +46,6 @@ Game::~Game() { void Game::loop() { while (!mQuit) { - input(); int elapsed = mClock.restart().asMilliseconds(); @@ -83,7 +55,6 @@ Game::loop() { mWorld.think(elapsed); mWorld.step(elapsed); - render(); } } diff --git a/source/Game.h b/source/Game.h index f7d349b..1f4a520 100644 --- a/source/Game.h +++ b/source/Game.h @@ -35,7 +35,6 @@ private: void mouseDown(const sf::Event& event); void mouseUp(const sf::Event& event); - void generate(); sf::Vector2 convertCoordinates(int x, int y); private: diff --git a/source/Generator.cpp b/source/Generator.cpp new file mode 100644 index 0000000..34bbcb6 --- /dev/null +++ b/source/Generator.cpp @@ -0,0 +1,135 @@ +/* + * Generator.cpp + * + * Created on: 07.04.2013 + * Author: Felix + */ + +#include "Generator.h" + +#include + +#include "simplexnoise.h" +#include "sprites/TileManager.h" + +/// For usage with simplexnoise.h +uint8_t perm[512]; + +/** + * Generates new random seed. + */ +Generator::Generator() { + std::mt19937 mersenne(time(nullptr)); + std::uniform_int_distribution distribution(0, 255); + + for (int i = 0; i < 512; i++) { + perm[i] = distribution(mersenne); + } +} + +/** + * Fill TileManager with procedurally generated tiles. + * + * True means wall, false means floor. + * + * @param tm TileManager instance to set tiles in. + * @param area Size and position of area to generate tiles for. + */ +void +Generator::generateTiles(TileManager& tm, const sf::IntRect& area) const { + std::vector > + noise(area.width, std::vector(area.height)); + std::vector > + filtered(area.width, std::vector(area.height, false)); + + for (int x = area.left; x < area.left+area.width; x++) { + for (int y = area.top; y < area.top+area.height; y++) { + noise[x-area.left][y-area.top] = + (scaled_octave_noise_2d(2, 2, 0.0015f, 0.5f, -0.5f, x, y) + + scaled_octave_noise_2d(3, 3, 0.01f, -1, 1, x, y)) < 0.05f; + } + } + + for (int x = 0; x < (int) noise.size(); x+=5) { + for (int y = 0; y < (int) noise[x].size(); y+=5) { + filterWalls(noise, filtered, x, y, 10, 5, 0); + filterWalls(noise, filtered, x, y, 30, 5, 10); + filterWalls(noise, filtered, x, y, 50, 5, 20); + } + } + + for (int x = area.left; x < area.left+area.width; x++) { + for (int y = area.top; y < area.top+area.height; y++) { + tm.insertTile(TileManager::TilePosition(x, y), + (filtered[x-area.left][y-area.top]) + ? TileManager::Type::WALL : TileManager::Type::FLOOR); + } + } +} + +/** + * Fills a rectangular area with the specified value. + * + * @param[in] Rectangular map. + * @param area The area to fill. + * @param value The value to set. + */ +void +Generator::fill(std::vector >& image, + const sf::IntRect& area, bool value) { + for (int x = area.left; + x < area.left + area.width && x < (int) image.size(); x++) { + for (int y = area.top; + y < area.top + area.height && y < (int) image[x].size(); y++) { + image[x][y] = value; + } + } +} + +/** + * Finds rectangles of specific size in in and puts them into out. + * + * True means wall, false means floor. + * + * @param[in] in Rectangular map of walls. + * @param[out] out Rectangular map of walls. + * @param x Position to check from (top left corner for rectangle). + * @param y Position to check from (top left corner for rectangle). + * @param longside Length of the longer side of the rectangle. + * @param shortside Length of the shorter side of the rectangle. + * @param subtract Still accepts rectangle if at least this amount of + * tiles is not walls (tilecount >= longside * shortside - subtract). + */ +void +Generator::filterWalls(std::vector >& in, + std::vector >& out, + int x, int y, int longside, int shortside, int subtract) { + // Skip if we would go out of range. + if ((x + longside >= (int) in.size()) || + (y + longside >= (int) in[0].size())) + return; + + // Filter in horizontal direction. + if (x % longside == 0 && y % shortside == 0) { + int count = 0; + for (int x2 = x; x2 < x + longside; x2++) { + for (int y2 = y; y2 < y + shortside; y2++) { + count += (int) in[x2][y2]; + } + } + if (count >= shortside * longside - subtract) + fill(out, sf::IntRect(x, y, longside, shortside), true); + } + + // Filter in vertical direction. + if (x % shortside == 0 && y % longside == 0) { + int count = 0; + for (int x2 = x; x2 < x + shortside; x2++) { + for (int y2 = y; y2 < y + longside; y2++) + count += (int) in[x2][y2]; + } + if (count >= shortside * longside - subtract) + fill(out, sf::IntRect(x, y, shortside, longside), true); + } +} + diff --git a/source/Generator.h b/source/Generator.h new file mode 100644 index 0000000..f5c72d6 --- /dev/null +++ b/source/Generator.h @@ -0,0 +1,30 @@ +/* + * Generator.h + * + * Created on: 07.04.2013 + * Author: Felix + */ + +#ifndef DG_GENERATOR_H_ +#define DG_GENERATOR_H_ + +#include + +class TileManager; + +class Generator { +public: + explicit Generator(); + void generateTiles(TileManager& tm, const sf::IntRect& area) const; + //void generateCharacters(World& world, const sf::IntRect& area) const; + sf::Vector2f getPlayerSpawn() const; + +private: + static void fill(std::vector >& image, + const sf::IntRect& area, bool value); + static void filterWalls(std::vector >& in, + std::vector >& out, + int x, int y, int longside, int shortside, int subtract); +}; + +#endif /* DG_GENERATOR_H_ */ diff --git a/source/simplexnoise.cpp b/source/simplexnoise.cpp new file mode 100644 index 0000000..304a768 --- /dev/null +++ b/source/simplexnoise.cpp @@ -0,0 +1,475 @@ +/* Copyright (c) 2007-2012 Eliot Eshelman + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + */ + + +#include + +#include "simplexnoise.h" + + +/* 2D, 3D and 4D Simplex Noise functions return 'random' values in (-1, 1). + +This algorithm was originally designed by Ken Perlin, but my code has been +adapted from the implementation written by Stefan Gustavson (stegu@itn.liu.se) + +Raw Simplex noise functions return the value generated by Ken's algorithm. + +Scaled Raw Simplex noise functions adjust the range of values returned from the +traditional (-1, 1) to whichever bounds are passed to the function. + +Multi-Octave Simplex noise functions compine multiple noise values to create a +more complex result. Each successive layer of noise is adjusted and scaled. + +Scaled Multi-Octave Simplex noise functions scale the values returned from the +traditional (-1,1) range to whichever range is passed to the function. + +In many cases, you may think you only need a 1D noise function, but in practice +2D is almost always better. For instance, if you're using the current frame +number as the parameter for the noise, all objects will end up with the same +noise value at each frame. By adding a second parameter on the second +dimension, you can ensure that each gets a unique noise value and they don't +all look identical. +*/ + + +// 2D Multi-octave Simplex noise. +// +// For each octave, a higher frequency/lower amplitude function will be added to the original. +// The higher the persistence [0-1], the more of each succeeding octave will be added. +float octave_noise_2d( const float octaves, const float persistence, const float scale, const float x, const float y ) { + float total = 0; + float frequency = scale; + float amplitude = 1; + + // We have to keep track of the largest possible amplitude, + // because each octave adds more, and we need a value in [-1, 1]. + float maxAmplitude = 0; + + for( int i=0; i < octaves; i++ ) { + total += raw_noise_2d( x * frequency, y * frequency ) * amplitude; + + frequency *= 2; + maxAmplitude += amplitude; + amplitude *= persistence; + } + + return total / maxAmplitude; +} + + +// 3D Multi-octave Simplex noise. +// +// For each octave, a higher frequency/lower amplitude function will be added to the original. +// The higher the persistence [0-1], the more of each succeeding octave will be added. +float octave_noise_3d( const float octaves, const float persistence, const float scale, const float x, const float y, const float z ) { + float total = 0; + float frequency = scale; + float amplitude = 1; + + // We have to keep track of the largest possible amplitude, + // because each octave adds more, and we need a value in [-1, 1]. + float maxAmplitude = 0; + + for( int i=0; i < octaves; i++ ) { + total += raw_noise_3d( x * frequency, y * frequency, z * frequency ) * amplitude; + + frequency *= 2; + maxAmplitude += amplitude; + amplitude *= persistence; + } + + return total / maxAmplitude; +} + + +// 4D Multi-octave Simplex noise. +// +// For each octave, a higher frequency/lower amplitude function will be added to the original. +// The higher the persistence [0-1], the more of each succeeding octave will be added. +float octave_noise_4d( const float octaves, const float persistence, const float scale, const float x, const float y, const float z, const float w ) { + float total = 0; + float frequency = scale; + float amplitude = 1; + + // We have to keep track of the largest possible amplitude, + // because each octave adds more, and we need a value in [-1, 1]. + float maxAmplitude = 0; + + for( int i=0; i < octaves; i++ ) { + total += raw_noise_4d( x * frequency, y * frequency, z * frequency, w * frequency ) * amplitude; + + frequency *= 2; + maxAmplitude += amplitude; + amplitude *= persistence; + } + + return total / maxAmplitude; +} + + + +// 2D Scaled Multi-octave Simplex noise. +// +// Returned value will be between loBound and hiBound. +float scaled_octave_noise_2d( const float octaves, const float persistence, const float scale, const float loBound, const float hiBound, const float x, const float y ) { + return octave_noise_2d(octaves, persistence, scale, x, y) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2; +} + + +// 3D Scaled Multi-octave Simplex noise. +// +// Returned value will be between loBound and hiBound. +float scaled_octave_noise_3d( const float octaves, const float persistence, const float scale, const float loBound, const float hiBound, const float x, const float y, const float z ) { + return octave_noise_3d(octaves, persistence, scale, x, y, z) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2; +} + +// 4D Scaled Multi-octave Simplex noise. +// +// Returned value will be between loBound and hiBound. +float scaled_octave_noise_4d( const float octaves, const float persistence, const float scale, const float loBound, const float hiBound, const float x, const float y, const float z, const float w ) { + return octave_noise_4d(octaves, persistence, scale, x, y, z, w) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2; +} + + + +// 2D Scaled Simplex raw noise. +// +// Returned value will be between loBound and hiBound. +float scaled_raw_noise_2d( const float loBound, const float hiBound, const float x, const float y ) { + return raw_noise_2d(x, y) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2; +} + + +// 3D Scaled Simplex raw noise. +// +// Returned value will be between loBound and hiBound. +float scaled_raw_noise_3d( const float loBound, const float hiBound, const float x, const float y, const float z ) { + return raw_noise_3d(x, y, z) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2; +} + +// 4D Scaled Simplex raw noise. +// +// Returned value will be between loBound and hiBound. +float scaled_raw_noise_4d( const float loBound, const float hiBound, const float x, const float y, const float z, const float w ) { + return raw_noise_4d(x, y, z, w) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2; +} + + + +// 2D raw Simplex noise +float raw_noise_2d( const float x, const float y ) { + // Noise contributions from the three corners + float n0, n1, n2; + + // Skew the input space to determine which simplex cell we're in + float F2 = 0.5 * (sqrtf(3.0) - 1.0); + // Hairy factor for 2D + float s = (x + y) * F2; + int i = fastfloor( x + s ); + int j = fastfloor( y + s ); + + float G2 = (3.0 - sqrtf(3.0)) / 6.0; + float t = (i + j) * G2; + // Unskew the cell origin back to (x,y) space + float X0 = i-t; + float Y0 = j-t; + // The x,y distances from the cell origin + float x0 = x-X0; + float y0 = y-Y0; + + // For the 2D case, the simplex shape is an equilateral triangle. + // Determine which simplex we are in. + int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords + if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1) + else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1) + + // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and + // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where + // c = (3-sqrt(3))/6 + float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords + float y1 = y0 - j1 + G2; + float x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords + float y2 = y0 - 1.0 + 2.0 * G2; + + // Work out the hashed gradient indices of the three simplex corners + int ii = i & 255; + int jj = j & 255; + uint8_t gi0 = perm[ii+perm[jj]] % 12; + uint8_t gi1 = perm[ii+i1+perm[jj+j1]] % 12; + uint8_t gi2 = perm[ii+1+perm[jj+1]] % 12; + + // Calculate the contribution from the three corners + float t0 = 0.5 - x0*x0-y0*y0; + if(t0<0) n0 = 0.0; + else { + t0 *= t0; + n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient + } + + float t1 = 0.5 - x1*x1-y1*y1; + if(t1<0) n1 = 0.0; + else { + t1 *= t1; + n1 = t1 * t1 * dot(grad3[gi1], x1, y1); + } + + float t2 = 0.5 - x2*x2-y2*y2; + if(t2<0) n2 = 0.0; + else { + t2 *= t2; + n2 = t2 * t2 * dot(grad3[gi2], x2, y2); + } + + // Add contributions from each corner to get the final noise value. + // The result is scaled to return values in the interval [-1,1]. + return 70.0 * (n0 + n1 + n2); +} + + +// 3D raw Simplex noise +float raw_noise_3d( const float x, const float y, const float z ) { + float n0, n1, n2, n3; // Noise contributions from the four corners + + // Skew the input space to determine which simplex cell we're in + float F3 = 1.0/3.0; + float s = (x+y+z)*F3; // Very nice and simple skew factor for 3D + int i = fastfloor(x+s); + int j = fastfloor(y+s); + int k = fastfloor(z+s); + + float G3 = 1.0/6.0; // Very nice and simple unskew factor, too + float t = (i+j+k)*G3; + float X0 = i-t; // Unskew the cell origin back to (x,y,z) space + float Y0 = j-t; + float Z0 = k-t; + float x0 = x-X0; // The x,y,z distances from the cell origin + float y0 = y-Y0; + float z0 = z-Z0; + + // For the 3D case, the simplex shape is a slightly irregular tetrahedron. + // Determine which simplex we are in. + int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords + int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords + + if(x0>=y0) { + if(y0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order + else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order + else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order + } + else { // x0 y0) ? 32 : 0; + int c2 = (x0 > z0) ? 16 : 0; + int c3 = (y0 > z0) ? 8 : 0; + int c4 = (x0 > w0) ? 4 : 0; + int c5 = (y0 > w0) ? 2 : 0; + int c6 = (z0 > w0) ? 1 : 0; + int c = c1 + c2 + c3 + c4 + c5 + c6; + + int i1, j1, k1, l1; // The integer offsets for the second simplex corner + int i2, j2, k2, l2; // The integer offsets for the third simplex corner + int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner + + // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. + // Many values of c will never occur, since e.g. x>y>z>w makes x=3 ? 1 : 0; + j1 = simplex[c][1]>=3 ? 1 : 0; + k1 = simplex[c][2]>=3 ? 1 : 0; + l1 = simplex[c][3]>=3 ? 1 : 0; + // The number 2 in the "simplex" array is at the second largest coordinate. + i2 = simplex[c][0]>=2 ? 1 : 0; + j2 = simplex[c][1]>=2 ? 1 : 0; + k2 = simplex[c][2]>=2 ? 1 : 0; + l2 = simplex[c][3]>=2 ? 1 : 0; + // The number 1 in the "simplex" array is at the second smallest coordinate. + i3 = simplex[c][0]>=1 ? 1 : 0; + j3 = simplex[c][1]>=1 ? 1 : 0; + k3 = simplex[c][2]>=1 ? 1 : 0; + l3 = simplex[c][3]>=1 ? 1 : 0; + // The fifth corner has all coordinate offsets = 1, so no need to look that up. + + float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords + float y1 = y0 - j1 + G4; + float z1 = z0 - k1 + G4; + float w1 = w0 - l1 + G4; + float x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords + float y2 = y0 - j2 + 2.0*G4; + float z2 = z0 - k2 + 2.0*G4; + float w2 = w0 - l2 + 2.0*G4; + float x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords + float y3 = y0 - j3 + 3.0*G4; + float z3 = z0 - k3 + 3.0*G4; + float w3 = w0 - l3 + 3.0*G4; + float x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords + float y4 = y0 - 1.0 + 4.0*G4; + float z4 = z0 - 1.0 + 4.0*G4; + float w4 = w0 - 1.0 + 4.0*G4; + + // Work out the hashed gradient indices of the five simplex corners + int ii = i & 255; + int jj = j & 255; + int kk = k & 255; + int ll = l & 255; + uint8_t gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32; + uint8_t gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32; + uint8_t gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32; + uint8_t gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32; + uint8_t gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32; + + // Calculate the contribution from the five corners + float t0 = 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0; + if(t0<0) n0 = 0.0; + else { + t0 *= t0; + n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); + } + + float t1 = 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1; + if(t1<0) n1 = 0.0; + else { + t1 *= t1; + n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); + } + + float t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2; + if(t2<0) n2 = 0.0; + else { + t2 *= t2; + n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); + } + + float t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3; + if(t3<0) n3 = 0.0; + else { + t3 *= t3; + n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); + } + + float t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4; + if(t4<0) n4 = 0.0; + else { + t4 *= t4; + n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); + } + + // Sum up and scale the result to cover the range [-1,1] + return 27.0 * (n0 + n1 + n2 + n3 + n4); +} + + +int fastfloor( const float x ) { return x > 0 ? (int) x : (int) x - 1; } + +float dot( const int8_t* g, const float x, const float y ) { return g[0]*x + g[1]*y; } +float dot( const int8_t* g, const float x, const float y, const float z ) { return g[0]*x + g[1]*y + g[2]*z; } +float dot( const int8_t* g, const float x, const float y, const float z, const float w ) { return g[0]*x + g[1]*y + g[2]*z + g[3]*w; } diff --git a/source/simplexnoise.h b/source/simplexnoise.h new file mode 100644 index 0000000..7d30230 --- /dev/null +++ b/source/simplexnoise.h @@ -0,0 +1,171 @@ +/* Copyright (c) 2007-2012 Eliot Eshelman + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + */ + + +#ifndef SIMPLEX_H_ +#define SIMPLEX_H_ + +#include + +/* 2D, 3D and 4D Simplex Noise functions return 'random' values in (-1, 1). + +This algorithm was originally designed by Ken Perlin, but my code has been +adapted from the implementation written by Stefan Gustavson (stegu@itn.liu.se) + +Raw Simplex noise functions return the value generated by Ken's algorithm. + +Scaled Raw Simplex noise functions adjust the range of values returned from the +traditional (-1, 1) to whichever bounds are passed to the function. + +Multi-Octave Simplex noise functions compine multiple noise values to create a +more complex result. Each successive layer of noise is adjusted and scaled. + +Scaled Multi-Octave Simplex noise functions scale the values returned from the +traditional (-1,1) range to whichever range is passed to the function. + +In many cases, you may think you only need a 1D noise function, but in practice +2D is almost always better. For instance, if you're using the current frame +number as the parameter for the noise, all objects will end up with the same +noise value at each frame. By adding a second parameter on the second +dimension, you can ensure that each gets a unique noise value and they don't +all look identical. +*/ + +//from http://www.6by9.net/simplex-noise-for-c-and-python/ + +// Multi-octave Simplex noise +// For each octave, a higher frequency/lower amplitude function will be added to the original. +// The higher the persistence [0-1], the more of each succeeding octave will be added. +float octave_noise_2d(const float octaves, + const float persistence, + const float scale, + const float x, + const float y); +float octave_noise_3d(const float octaves, + const float persistence, + const float scale, + const float x, + const float y, + const float z); +float octave_noise_4d(const float octaves, + const float persistence, + const float scale, + const float x, + const float y, + const float z, + const float w); + + +// Scaled Multi-octave Simplex noise +// The result will be between the two parameters passed. +float scaled_octave_noise_2d( const float octaves, + const float persistence, + const float scale, + const float loBound, + const float hiBound, + const float x, + const float y); +float scaled_octave_noise_3d( const float octaves, + const float persistence, + const float scale, + const float loBound, + const float hiBound, + const float x, + const float y, + const float z); +float scaled_octave_noise_4d( const float octaves, + const float persistence, + const float scale, + const float loBound, + const float hiBound, + const float x, + const float y, + const float z, + const float w); + +// Scaled Raw Simplex noise +// The result will be between the two parameters passed. +float scaled_raw_noise_2d( const float loBound, + const float hiBound, + const float x, + const float y); +float scaled_raw_noise_3d( const float loBound, + const float hiBound, + const float x, + const float y, + const float z); +float scaled_raw_noise_4d( const float loBound, + const float hiBound, + const float x, + const float y, + const float z, + const float w); + + +// Raw Simplex noise - a single noise value. +float raw_noise_2d(const float x, const float y); +float raw_noise_3d(const float x, const float y, const float z); +float raw_noise_4d(const float x, const float y, const float, const float w); + + +int fastfloor(const float x); + +float dot(const int8_t* g, const float x, const float y); +float dot(const int8_t* g, const float x, const float y, const float z); +float dot(const int8_t* g, const float x, const float y, const float z, const float w); + + +// The gradients are the midpoints of the vertices of a cube. +static const int8_t grad3[12][3] = { + {1,1,0}, {-1,1,0}, {1,-1,0}, {-1,-1,0}, + {1,0,1}, {-1,0,1}, {1,0,-1}, {-1,0,-1}, + {0,1,1}, {0,-1,1}, {0,1,-1}, {0,-1,-1} +}; + + +// The gradients are the midpoints of the vertices of a hypercube. +static const int8_t grad4[32][4]= { + {0,1,1,1}, {0,1,1,-1}, {0,1,-1,1}, {0,1,-1,-1}, + {0,-1,1,1}, {0,-1,1,-1}, {0,-1,-1,1}, {0,-1,-1,-1}, + {1,0,1,1}, {1,0,1,-1}, {1,0,-1,1}, {1,0,-1,-1}, + {-1,0,1,1}, {-1,0,1,-1}, {-1,0,-1,1}, {-1,0,-1,-1}, + {1,1,0,1}, {1,1,0,-1}, {1,-1,0,1}, {1,-1,0,-1}, + {-1,1,0,1}, {-1,1,0,-1}, {-1,-1,0,1}, {-1,-1,0,-1}, + {1,1,1,0}, {1,1,-1,0}, {1,-1,1,0}, {1,-1,-1,0}, + {-1,1,1,0}, {-1,1,-1,0}, {-1,-1,1,0}, {-1,-1,-1,0} +}; + + +// Permutation table. The same list is repeated twice. +// removed const +extern uint8_t perm[512]; + + +// A lookup table to traverse the simplex around a given point in 4D. +static const uint8_t simplex[64][4] = { + {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0}, + {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0}, + {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}, + {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0}, + {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0}, + {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}, + {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0}, + {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0} +}; + + +#endif /*SIMPLEX_H_*/