imag/libimagentrylink/src/internal.rs

994 lines
37 KiB
Rust

//
// imag - the personal information management suite for the commandline
// Copyright (C) 2015, 2016 Matthias Beyer <mail@beyermatthias.de> and contributors
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; version
// 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
use std::collections::BTreeMap;
#[cfg(test)]
use std::path::PathBuf;
use libimagstore::storeid::StoreId;
use libimagstore::storeid::IntoStoreId;
use libimagstore::store::Entry;
use libimagstore::store::Result as StoreResult;
use libimagstore::toml_ext::TomlValueExt;
use libimagerror::into::IntoError;
use error::LinkErrorKind as LEK;
use error::MapErrInto;
use result::Result;
use self::iter::LinkIter;
use self::iter::IntoValues;
use toml::Value;
#[derive(Eq, PartialOrd, Ord, Hash, Debug, Clone)]
pub enum Link {
Id { link: StoreId },
Annotated { link: StoreId, annotation: String },
}
impl Link {
pub fn exists(&self) -> Result<bool> {
match *self {
Link::Id { ref link } => link.exists(),
Link::Annotated { ref link, .. } => link.exists(),
}
.map_err_into(LEK::StoreIdError)
}
pub fn to_str(&self) -> Result<String> {
match *self {
Link::Id { ref link } => link.to_str(),
Link::Annotated { ref link, .. } => link.to_str(),
}
.map_err_into(LEK::StoreReadError)
}
fn eq_store_id(&self, id: &StoreId) -> bool {
match self {
&Link::Id { link: ref s } => s.eq(id),
&Link::Annotated { link: ref s, .. } => s.eq(id),
}
}
/// Get the StoreId inside the Link, which is always present
pub fn get_store_id(&self) -> &StoreId {
match self {
&Link::Id { link: ref s } => s,
&Link::Annotated { link: ref s, .. } => s,
}
}
/// Helper wrapper around Link for StoreId
fn without_base(self) -> Link {
match self {
Link::Id { link: s } => Link::Id { link: s.without_base() },
Link::Annotated { link: s, annotation: ann } =>
Link::Annotated { link: s.without_base(), annotation: ann },
}
}
/// Helper wrapper around Link for StoreId
#[cfg(test)]
fn with_base(self, pb: PathBuf) -> Link {
match self {
Link::Id { link: s } => Link::Id { link: s.with_base(pb) },
Link::Annotated { link: s, annotation: ann } =>
Link::Annotated { link: s.with_base(pb), annotation: ann },
}
}
fn to_value(&self) -> Result<Value> {
match self {
&Link::Id { link: ref s } =>
s.to_str().map(Value::String).map_err_into(LEK::InternalConversionError),
&Link::Annotated { ref link, annotation: ref anno } => {
link.to_str()
.map(Value::String)
.map_err_into(LEK::InternalConversionError)
.map(|link| {
let mut tab = BTreeMap::new();
tab.insert("link".to_owned(), link);
tab.insert("annotation".to_owned(), Value::String(anno.clone()));
Value::Table(tab)
})
}
}
}
}
impl ::std::cmp::PartialEq for Link {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(&Link::Id { link: ref a }, &Link::Id { link: ref b }) => a.eq(&b),
(&Link::Annotated { link: ref a, annotation: ref ann1 },
&Link::Annotated { link: ref b, annotation: ref ann2 }) =>
(a, ann1).eq(&(b, ann2)),
_ => false,
}
}
}
impl From<StoreId> for Link {
fn from(s: StoreId) -> Link {
Link::Id { link: s }
}
}
impl Into<StoreId> for Link {
fn into(self) -> StoreId {
match self {
Link::Id { link } => link,
Link::Annotated { link, .. } => link,
}
}
}
impl IntoStoreId for Link {
fn into_storeid(self) -> StoreResult<StoreId> {
match self {
Link::Id { link } => Ok(link),
Link::Annotated { link, .. } => Ok(link),
}
}
}
impl AsRef<StoreId> for Link {
fn as_ref(&self) -> &StoreId {
match self {
&Link::Id { ref link } => &link,
&Link::Annotated { ref link, .. } => &link,
}
}
}
pub trait InternalLinker {
/// Get the internal links from the implementor object
fn get_internal_links(&self) -> Result<LinkIter>;
/// Set the internal links for the implementor object
fn set_internal_links(&mut self, links: Vec<&mut Entry>) -> Result<LinkIter>;
/// Add an internal link to the implementor object
fn add_internal_link(&mut self, link: &mut Entry) -> Result<()>;
/// Remove an internal link from the implementor object
fn remove_internal_link(&mut self, link: &mut Entry) -> Result<()>;
/// Add internal annotated link
fn add_internal_annotated_link(&mut self, link: &mut Entry, annotation: String) -> Result<()>;
}
pub mod iter {
use std::vec::IntoIter;
use super::Link;
use error::LinkErrorKind as LEK;
use error::MapErrInto;
use result::Result;
use toml::Value;
use itertools::Itertools;
use libimagstore::store::Store;
use libimagstore::store::FileLockEntry;
pub struct LinkIter(IntoIter<Link>);
impl LinkIter {
pub fn new(v: Vec<Link>) -> LinkIter {
LinkIter(v.into_iter())
}
pub fn into_getter(self, store: &Store) -> GetIter {
GetIter(self.0, store)
}
}
impl Iterator for LinkIter {
type Item = Link;
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
}
pub trait IntoValues {
fn into_values(self) -> Vec<Result<Value>>;
}
impl<I: Iterator<Item = Link>> IntoValues for I {
fn into_values(self) -> Vec<Result<Value>> {
self.map(|s| s.without_base())
.unique()
.sorted()
.into_iter() // Cannot sort toml::Value, hence uglyness here
.map(|link| link.to_value().map_err_into(LEK::InternalConversionError))
.collect()
}
}
/// An Iterator that `Store::get()`s the Entries from the store while consumed
pub struct GetIter<'a>(IntoIter<Link>, &'a Store);
impl<'a> GetIter<'a> {
pub fn new(i: IntoIter<Link>, store: &'a Store) -> GetIter<'a> {
GetIter(i, store)
}
/// Turn this iterator into a LinkGcIter, which `Store::delete()`s entries that are not
/// linked to any other entry.
pub fn delete_unlinked(self) -> DeleteUnlinkedIter<'a> {
DeleteUnlinkedIter(self)
}
/// Turn this iterator into a FilterLinksIter that removes all entries that are not linked
/// to any other entry, by filtering them out the iterator.
///
/// This does _not_ remove the entries from the store.
pub fn without_unlinked(self) -> FilterLinksIter<'a> {
FilterLinksIter::new(self, Box::new(|links: &[Link]| links.len() > 0))
}
/// Turn this iterator into a FilterLinksIter that removes all entries that have less than
/// `n` links to any other entries.
///
/// This does _not_ remove the entries from the store.
pub fn with_less_than_n_links(self, n: usize) -> FilterLinksIter<'a> {
FilterLinksIter::new(self, Box::new(move |links: &[Link]| links.len() < n))
}
/// Turn this iterator into a FilterLinksIter that removes all entries that have more than
/// `n` links to any other entries.
///
/// This does _not_ remove the entries from the store.
pub fn with_more_than_n_links(self, n: usize) -> FilterLinksIter<'a> {
FilterLinksIter::new(self, Box::new(move |links: &[Link]| links.len() > n))
}
/// Turn this iterator into a FilterLinksIter that removes all entries where the predicate
/// `F` returns false
///
/// This does _not_ remove the entries from the store.
pub fn filtered_for_links(self, f: Box<Fn(&[Link]) -> bool>) -> FilterLinksIter<'a> {
FilterLinksIter::new(self, f)
}
pub fn store(&self) -> &Store {
self.1
}
}
impl<'a> Iterator for GetIter<'a> {
type Item = Result<FileLockEntry<'a>>;
fn next(&mut self) -> Option<Self::Item> {
self.0.next().and_then(|id| match self.1.get(id).map_err_into(LEK::StoreReadError) {
Ok(None) => None,
Ok(Some(x)) => Some(Ok(x)),
Err(e) => Some(Err(e)),
})
}
}
/// An iterator helper that has a function F.
///
/// If the function F returns `false` for the number of links, the entry is ignored, else it is
/// taken.
pub struct FilterLinksIter<'a>(GetIter<'a>, Box<Fn(&[Link]) -> bool>);
impl<'a> FilterLinksIter<'a> {
pub fn new(gi: GetIter<'a>, f: Box<Fn(&[Link]) -> bool>) -> FilterLinksIter<'a> {
FilterLinksIter(gi, f)
}
}
impl<'a> Iterator for FilterLinksIter<'a> {
type Item = Result<FileLockEntry<'a>>;
fn next(&mut self) -> Option<Self::Item> {
use internal::InternalLinker;
loop {
match self.0.next() {
Some(Ok(fle)) => {
let links = match fle.get_internal_links().map_err_into(LEK::StoreReadError)
{
Err(e) => return Some(Err(e)),
Ok(links) => links.collect::<Vec<_>>(),
};
if !(self.1)(&links) {
continue;
} else {
return Some(Ok(fle));
}
},
Some(Err(e)) => return Some(Err(e)),
None => break,
}
}
None
}
}
/// An iterator that removes all Items from the iterator that are not linked anymore by calling
/// `Store::delete()` on them.
///
/// It yields only items which are somehow linked to another entry
///
/// # Warning
///
/// Deletes entries from the store.
///
pub struct DeleteUnlinkedIter<'a>(GetIter<'a>);
impl<'a> Iterator for DeleteUnlinkedIter<'a> {
type Item = Result<FileLockEntry<'a>>;
fn next(&mut self) -> Option<Self::Item> {
use internal::InternalLinker;
loop {
match self.0.next() {
Some(Ok(fle)) => {
let links = match fle.get_internal_links().map_err_into(LEK::StoreReadError)
{
Err(e) => return Some(Err(e)),
Ok(links) => links,
};
if links.count() == 0 {
match self.0
.store()
.delete(fle.get_location().clone())
.map_err_into(LEK::StoreWriteError)
{
Ok(x) => x,
Err(e) => return Some(Err(e)),
}
} else {
return Some(Ok(fle));
}
},
Some(Err(e)) => return Some(Err(e)),
None => break,
}
}
None
}
}
}
impl InternalLinker for Entry {
fn get_internal_links(&self) -> Result<LinkIter> {
process_rw_result(self.get_header().read("imag.links"))
}
/// Set the links in a header and return the old links, if any.
fn set_internal_links(&mut self, links: Vec<&mut Entry>) -> Result<LinkIter> {
use internal::iter::IntoValues;
let self_location = self.get_location().clone();
let mut new_links = vec![];
for link in links {
if let Err(e) = add_foreign_link(link, self_location.clone()) {
return Err(e);
}
new_links.push(link.get_location().clone().into());
}
let new_links = try!(LinkIter::new(new_links)
.into_values()
.into_iter()
.fold(Ok(vec![]), |acc, elem| {
acc.and_then(move |mut v| {
elem.map_err_into(LEK::InternalConversionError)
.map(|e| {
v.push(e);
v
})
})
}));
process_rw_result(self.get_header_mut().set("imag.links", Value::Array(new_links)))
}
fn add_internal_link(&mut self, link: &mut Entry) -> Result<()> {
let location = link.get_location().clone().into();
add_internal_link_with_instance(self, link, location)
}
fn remove_internal_link(&mut self, link: &mut Entry) -> Result<()> {
let own_loc = self.get_location().clone().without_base();
let other_loc = link.get_location().clone().without_base();
debug!("Removing internal link from {:?} to {:?}", own_loc, other_loc);
link.get_internal_links()
.and_then(|links| {
debug!("Rewriting own links for {:?}, without {:?}", other_loc, own_loc);
let links = links.filter(|l| !l.eq_store_id(&own_loc));
rewrite_links(link.get_header_mut(), links)
})
.and_then(|_| {
self.get_internal_links()
.and_then(|links| {
debug!("Rewriting own links for {:?}, without {:?}", own_loc, other_loc);
let links = links.filter(|l| !l.eq_store_id(&other_loc));
rewrite_links(self.get_header_mut(), links)
})
})
}
fn add_internal_annotated_link(&mut self, link: &mut Entry, annotation: String) -> Result<()> {
let new_link = Link::Annotated {
link: link.get_location().clone(),
annotation: annotation,
};
add_internal_link_with_instance(self, link, new_link)
}
}
fn add_internal_link_with_instance(this: &mut Entry, link: &mut Entry, instance: Link) -> Result<()> {
debug!("Adding internal link from {:?} to {:?}", this.get_location(), instance);
add_foreign_link(link, this.get_location().clone())
.and_then(|_| {
this.get_internal_links()
.and_then(|links| {
let links = links.chain(LinkIter::new(vec![instance]));
rewrite_links(this.get_header_mut(), links)
})
})
}
fn rewrite_links<I: Iterator<Item = Link>>(header: &mut Value, links: I) -> Result<()> {
let links = try!(links.into_values()
.into_iter()
.fold(Ok(vec![]), |acc, elem| {
acc.and_then(move |mut v| {
elem.map_err_into(LEK::InternalConversionError)
.map(|e| {
v.push(e);
v
})
})
}));
debug!("Setting new link array: {:?}", links);
let process = header.set("imag.links", Value::Array(links));
process_rw_result(process).map(|_| ())
}
/// When Linking A -> B, the specification wants us to link back B -> A.
/// This is a helper function which does this.
fn add_foreign_link(target: &mut Entry, from: StoreId) -> Result<()> {
debug!("Linking back from {:?} to {:?}", target.get_location(), from);
target.get_internal_links()
.and_then(|links| {
let links = try!(links
.chain(LinkIter::new(vec![from.into()]))
.into_values()
.into_iter()
.fold(Ok(vec![]), |acc, elem| {
acc.and_then(move |mut v| {
elem.map_err_into(LEK::InternalConversionError)
.map(|e| {
v.push(e);
v
})
})
}));
debug!("Setting links in {:?}: {:?}", target.get_location(), links);
process_rw_result(target.get_header_mut().set("imag.links", Value::Array(links)))
.map(|_| ())
})
}
fn process_rw_result(links: StoreResult<Option<Value>>) -> Result<LinkIter> {
use std::path::PathBuf;
let links = match links {
Err(e) => {
debug!("RW action on store failed. Generating LinkError");
return Err(LEK::EntryHeaderReadError.into_error_with_cause(Box::new(e)))
},
Ok(None) => {
debug!("We got no value from the header!");
return Ok(LinkIter::new(vec![]))
},
Ok(Some(Value::Array(l))) => l,
Ok(Some(_)) => {
debug!("We expected an Array for the links, but there was a non-Array!");
return Err(LEK::ExistingLinkTypeWrong.into());
}
};
if !links.iter().all(|l| is_match!(*l, Value::String(_)) || is_match!(*l, Value::Table(_))) {
debug!("At least one of the Values which were expected in the Array of links is not a String or a Table!");
debug!("Generating LinkError");
return Err(LEK::ExistingLinkTypeWrong.into());
}
let links : Vec<Link> = try!(links.into_iter()
.map(|link| {
debug!("Matching the link: {:?}", link);
match link {
Value::String(s) => StoreId::new_baseless(PathBuf::from(s))
.map_err_into(LEK::StoreIdError)
.map(|s| Link::Id { link: s })
,
Value::Table(mut tab) => {
debug!("Destructuring table");
if !tab.contains_key("link")
|| !tab.contains_key("annotation") {
debug!("Things missing... returning Error instance");
Err(LEK::LinkParserError.into_error())
} else {
let link = try!(tab.remove("link")
.ok_or(LEK::LinkParserFieldMissingError.into_error()));
let anno = try!(tab.remove("annotation")
.ok_or(LEK::LinkParserFieldMissingError.into_error()));
debug!("Ok, here we go with building a Link::Annotated");
match (link, anno) {
(Value::String(link), Value::String(anno)) => {
StoreId::new_baseless(PathBuf::from(link))
.map_err_into(LEK::StoreIdError)
.map(|link| {
Link::Annotated {
link: link,
annotation: anno,
}
})
},
_ => Err(LEK::LinkParserFieldTypeError.into_error()),
}
}
}
_ => unreachable!(),
}
})
.collect());
debug!("Ok, the RW action was successful, returning link vector now!");
Ok(LinkIter::new(links))
}
pub mod store_check {
use libimagstore::store::Store;
pub mod error {
generate_error_imports!();
use libimagstore::storeid::StoreId;
#[derive(Debug)]
pub enum StoreLinkConsistencyErrorCustomData {
DeadLink {
target: StoreId
},
OneDirectionalLink {
source: StoreId,
target: StoreId
},
}
impl Display for StoreLinkConsistencyErrorCustomData {
fn fmt(&self, fmt: &mut Formatter) -> Result<(), FmtError> {
use self::StoreLinkConsistencyErrorCustomData as SLCECD;
match self {
&SLCECD::DeadLink { ref target } => {
try!(write!(fmt, "Dead Link to '{}'", target))
},
&SLCECD::OneDirectionalLink { ref source, ref target } => {
try!(write!(fmt,
"Link from '{}' to '{}' does exist, but not other way round",
source, target))
}
};
Ok(())
}
}
generate_custom_error_types!(
StoreLinkConsistencyError,
StoreLinkConsistencyErrorKind,
StoreLinkConsistencyErrorCustomData,
StoreLinkConsistencyError => "Links in the store are not consistent",
LinkHandlingError => "Error in link handling",
StoreError => "Error while talking to the store"
);
generate_result_helper!(StoreLinkConsistencyError, StoreLinkConsistencyErrorKind);
generate_option_helper!(StoreLinkConsistencyError, StoreLinkConsistencyErrorKind);
}
pub use self::error::StoreLinkConsistencyError;
pub use self::error::StoreLinkConsistencyErrorKind;
pub use self::error::MapErrInto;
pub mod result {
use std::result::Result as RResult;
use internal::store_check::error::StoreLinkConsistencyError as SLCE;
pub type Result<T> = RResult<T, SLCE>;
}
use self::result::Result;
pub trait StoreLinkConsistentExt {
fn check_link_consistency(&self) -> Result<()>;
}
impl StoreLinkConsistentExt for Store {
fn check_link_consistency(&self) -> Result<()> {
use std::collections::HashMap;
use self::error::StoreLinkConsistencyErrorKind as SLCEK;
use self::error::StoreLinkConsistencyError as SLCE;
use self::error::StoreLinkConsistencyErrorCustomData as SLCECD;
use error::LinkErrorKind as LEK;
use result::Result as LResult;
use internal::InternalLinker;
use libimagstore::store::StoreObject;
use libimagstore::storeid::StoreId;
use libimagerror::iter::TraceIterator;
use libimagerror::into::IntoError;
use libimagutil::iter::FoldResult;
// Helper data structure to collect incoming and outgoing links for each StoreId
#[derive(Debug, Default)]
struct Linking {
outgoing: Vec<StoreId>,
incoming: Vec<StoreId>,
}
/// Helper function to aggregate the Link network
///
/// This function aggregates a HashMap which maps each StoreId object in the store onto
/// a Linking object, which contains a list of StoreIds which this entry links to and a
/// list of StoreIds which link to the current one.
///
/// The lambda returns an error if something fails
let aggregate_link_network = |store: &Store| -> Result<HashMap<StoreId, Linking>> {
store
.walk("") // this is a hack... I know...
.filter_map(|obj: StoreObject| match obj {
StoreObject::Id(id) => Some(id),
_ => None
}) // Only ids are interesting
.fold(Ok(HashMap::new()), |acc, sid| {
acc.and_then(|mut state| {
debug!("Checking entry: '{}'", sid);
match try!(self.get(sid).map_err_into(SLCEK::StoreError)) {
Some(fle) => {
debug!("Found FileLockEntry");
let fle_loc = fle.get_location();
let internal_links = fle
.get_internal_links()
.map_err_into(SLCEK::StoreError)?
.into_getter(self) // get the FLEs from the Store
.trace_unwrap(); // trace all Err(e)s and get the Ok(fle)s
for internal_link in internal_links {
let il_loc = internal_link.get_location();
state
.entry(il_loc.clone())
.or_insert(Linking::default())
.incoming
.push(fle_loc.clone());
// Make sure an empty linking object is present for the
// current StoreId object
state
.entry(fle_loc.clone())
.or_insert(Linking::default())
.outgoing
.push(il_loc.clone());
}
Ok(state)
},
None => {
debug!("No entry");
Ok(state)
}
}
})
})
};
/// Helper to check whethre all StoreIds in the network actually exists
///
/// Because why not?
let all_collected_storeids_exist = |network: &HashMap<StoreId, Linking>| -> LResult<()> {
network
.iter()
.fold_result(|(id, _)| {
if is_match!(self.get(id.clone()), Ok(Some(_))) {
debug!("Exists in store: {:?}", id);
let exists = {
use error::MapErrInto as MEI;
try!(MEI::map_err_into(id.exists(), LEK::StoreReadError))
};
if !exists {
warn!("Does exist in store but not on FS: {:?}", id);
Err(LEK::LinkTargetDoesNotExist.into_error())
} else {
Ok(())
}
} else {
warn!("Does not exist in store: {:?}", id);
Err(LEK::LinkTargetDoesNotExist.into_error())
}
})
};
/// Helper function to create a SLCECD::OneDirectionalLink error object
#[inline]
let mk_one_directional_link_err = |src: StoreId, target: StoreId| -> SLCE {
// construct the error
let custom = SLCECD::OneDirectionalLink {
source: src,
target: target,
};
SLCEK::StoreLinkConsistencyError
.into_error()
.with_custom_data(custom)
};
/// Helper lambda to check whether the _incoming_ links of each entry actually also
/// appear in the _outgoing_ list of the linked entry
let incoming_links_exists_as_outgoing_links =
|src: &StoreId, linking: &Linking, network: &HashMap<StoreId, Linking>| -> Result<()> {
linking
.incoming
.iter()
.fold_result(|link| {
// Check whether the links which are _incoming_ on _src_ are outgoing
// in each of the links in the incoming list.
let incoming_consistent = network.get(link)
.map(|l| l.outgoing.contains(src))
.unwrap_or(false);
if !incoming_consistent {
Err(mk_one_directional_link_err(src.clone(), link.clone()))
} else {
Ok(())
}
})
};
/// Helper lambda to check whether the _outgoing links of each entry actually also
/// appear in the _incoming_ list of the linked entry
let outgoing_links_exist_as_incoming_links =
|src: &StoreId, linking: &Linking, network: &HashMap<StoreId, Linking>| -> Result<()> {
linking
.outgoing
.iter()
.fold_result(|link| {
// Check whether the links which are _outgoing_ on _src_ are incoming
// in each of the links in the outgoing list.
let outgoing_consistent = network.get(link)
.map(|l| l.incoming.contains(src))
.unwrap_or(false);
if !outgoing_consistent {
Err(mk_one_directional_link_err(link.clone(), src.clone()))
} else {
Ok(())
}
})
};
aggregate_link_network(&self)
.and_then(|nw| {
all_collected_storeids_exist(&nw)
.map(|_| nw)
.map_err_into(SLCEK::LinkHandlingError)
})
.and_then(|nw| {
nw.iter().fold_result(|(id, linking)| {
try!(incoming_links_exists_as_outgoing_links(id, linking, &nw));
try!(outgoing_links_exist_as_incoming_links(id, linking, &nw));
Ok(())
})
})
.map(|_| ())
}
}
}
#[cfg(test)]
mod test {
use std::path::PathBuf;
use libimagstore::store::Store;
use super::InternalLinker;
fn setup_logging() {
use env_logger;
let _ = env_logger::init().unwrap_or(());
}
pub fn get_store() -> Store {
Store::new(PathBuf::from("/"), None).unwrap()
}
#[test]
fn test_new_entry_no_links() {
setup_logging();
let store = get_store();
let entry = store.create(PathBuf::from("test_new_entry_no_links")).unwrap();
let links = entry.get_internal_links();
assert!(links.is_ok());
let links = links.unwrap();
assert_eq!(links.collect::<Vec<_>>().len(), 0);
}
#[test]
fn test_link_two_entries() {
setup_logging();
let store = get_store();
let mut e1 = store.create(PathBuf::from("test_link_two_entries1")).unwrap();
assert!(e1.get_internal_links().is_ok());
let mut e2 = store.create(PathBuf::from("test_link_two_entries2")).unwrap();
assert!(e2.get_internal_links().is_ok());
{
assert!(e1.add_internal_link(&mut e2).is_ok());
let e1_links = e1.get_internal_links().unwrap().collect::<Vec<_>>();
let e2_links = e2.get_internal_links().unwrap().collect::<Vec<_>>();
debug!("1 has links: {:?}", e1_links);
debug!("2 has links: {:?}", e2_links);
assert_eq!(e1_links.len(), 1);
assert_eq!(e2_links.len(), 1);
assert!(e1_links.first().map(|l| l.clone().with_base(store.path().clone()).eq_store_id(e2.get_location())).unwrap_or(false));
assert!(e2_links.first().map(|l| l.clone().with_base(store.path().clone()).eq_store_id(e1.get_location())).unwrap_or(false));
}
{
assert!(e1.remove_internal_link(&mut e2).is_ok());
println!("{:?}", e2.to_str());
let e2_links = e2.get_internal_links().unwrap().collect::<Vec<_>>();
assert_eq!(e2_links.len(), 0, "Expected [], got: {:?}", e2_links);
println!("{:?}", e1.to_str());
let e1_links = e1.get_internal_links().unwrap().collect::<Vec<_>>();
assert_eq!(e1_links.len(), 0, "Expected [], got: {:?}", e1_links);
}
}
#[test]
fn test_multiple_links() {
setup_logging();
let store = get_store();
let mut e1 = store.retrieve(PathBuf::from("1")).unwrap();
let mut e2 = store.retrieve(PathBuf::from("2")).unwrap();
let mut e3 = store.retrieve(PathBuf::from("3")).unwrap();
let mut e4 = store.retrieve(PathBuf::from("4")).unwrap();
let mut e5 = store.retrieve(PathBuf::from("5")).unwrap();
assert!(e1.add_internal_link(&mut e2).is_ok());
assert_eq!(e1.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e2.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e3.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert_eq!(e4.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert_eq!(e5.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert!(e1.add_internal_link(&mut e3).is_ok());
assert_eq!(e1.get_internal_links().unwrap().collect::<Vec<_>>().len(), 2);
assert_eq!(e2.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e3.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e4.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert_eq!(e5.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert!(e1.add_internal_link(&mut e4).is_ok());
assert_eq!(e1.get_internal_links().unwrap().collect::<Vec<_>>().len(), 3);
assert_eq!(e2.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e3.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e4.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e5.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert!(e1.add_internal_link(&mut e5).is_ok());
assert_eq!(e1.get_internal_links().unwrap().collect::<Vec<_>>().len(), 4);
assert_eq!(e2.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e3.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e4.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e5.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert!(e5.remove_internal_link(&mut e1).is_ok());
assert_eq!(e1.get_internal_links().unwrap().collect::<Vec<_>>().len(), 3);
assert_eq!(e2.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e3.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e4.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e5.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert!(e4.remove_internal_link(&mut e1).is_ok());
assert_eq!(e1.get_internal_links().unwrap().collect::<Vec<_>>().len(), 2);
assert_eq!(e2.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e3.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e4.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert_eq!(e5.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert!(e3.remove_internal_link(&mut e1).is_ok());
assert_eq!(e1.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e2.get_internal_links().unwrap().collect::<Vec<_>>().len(), 1);
assert_eq!(e3.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert_eq!(e4.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert_eq!(e5.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert!(e2.remove_internal_link(&mut e1).is_ok());
assert_eq!(e1.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert_eq!(e2.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert_eq!(e3.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert_eq!(e4.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
assert_eq!(e5.get_internal_links().unwrap().collect::<Vec<_>>().len(), 0);
}
}